【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
(3)探究:小明認為如果條件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.
【答案】(1) 40°;(2) 20°;(3)能,20°.
【解析】
試題分析:(1)根據(jù)三角形內角和定理得∠BAC=180°-∠B-∠C=80°,然后根據(jù)角平分線定義得∠BAE=∠BAC=40°;
(2)由于AD⊥BC,則∠ADE=90°,根據(jù)三角形外角性質得∠ADE=∠B+∠BAD,所以∠BAD=90°-∠B=20°,然后利用∠DAE=∠BAE-∠BAD進行計算;
(3)根據(jù)三角形內角和定理得∠BAC=180°-∠B-∠C,再根據(jù)角平分線定義得∠BAE=∠BAC=(180°-∠B-∠C)=90°-(∠B+∠C),加上∠ADE=∠B+∠BAD=90°,則∠BAD=90°-∠B,然后利用角的和差得∠DAE=∠BAE-∠BAD=90°-(∠B+∠C)-(90°-∠B)=(∠B-∠C),即∠DAE的度數(shù)等于∠B與∠C差的一半.
試題解析:(1)∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°-∠B-∠C=180°-70°-30°=80°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=40°;
(2)∵AD⊥BC,
∴∠ADE=90°,
而∠ADE=∠B+∠BAD,
∴∠BAD=90°-∠B=90°-70°=20°,
∴∠DAE=∠BAE-∠BAD=40°-20°=20°;
(3)能.
∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠BAE=∠BAC=(180°-∠B-∠C)=90°-(∠B+∠C),
∵AD⊥BC,
∴∠ADE=90°,
而∠ADE=∠B+∠BAD,
∴∠BAD=90°-∠B,
∴∠DAE=∠BAE-∠BAD=90°-(∠B+∠C)-(90°-∠B)=(∠B-∠C),
∵∠B-∠C=40°,
∴∠DAE=×40°=20°.
科目:初中數(shù)學 來源: 題型:
【題目】2016年2月19日,經(jīng)國務院批準,設立無錫市新吳區(qū),將無錫市原新區(qū)的鴻山、旺莊、碩放、梅村、新安街道劃和濱湖區(qū)的江溪街道歸新吳區(qū)管轄.新吳區(qū)現(xiàn)有總人口322819人,這個數(shù)據(jù)用科學記數(shù)法(精確到千位)可表示為( )
A.323×103
B.3.22×105
C.3.23×105
D.0.323×106
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)居民王先生改進用水設施,在5年內幫助他居住小區(qū)的居民累計節(jié)水39 400噸,將39 400用科學記數(shù)法表示為( )
A.3.94×103
B.3.94×104
C.39.4×103
D.0.394×105
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式由左到右變形中,是因式分解的是( )
A. a(x+y)=ax+ay B. x2-4x+4=x(x-4)+4
C. 10x2-5x=5x(2x-1) D. x2-16+3x=(x-4)(x+4)+3x
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從廣州某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】多項式6x3y2-3x2y2-18x2y3分解因式時,應提取的公因式是( )
A. 3x2y B. 3xy2 C. 3x2y2 D. 3x3y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個袋子中裝有大小完全相同的3粒乒乓球,其中2粒白色,1粒黃色.請你用它為甲、乙兩位同學設計一個能決定勝負的公平的摸球游戲規(guī)則.并說明公平的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com