【題目】如圖,點(diǎn),在線段上,,.若要使≌,可以添加的條件是:__________.
【答案】AB=DE或∠A=∠D或∠ACB=∠F.
【解析】
首先根據(jù)平行線的性質(zhì)可得∠B=∠DEF,再根據(jù)等式的性質(zhì)可得BC=EF,要判定△ABC≌△DEF,需要添加的條件是相等的角的另一邊或者一對角相等.
∵AB∥DE,∴∠B=∠DEF.
∵BE=CF,∴BE+EC=CF+EC,即BC=EF.
①若添加AB=DE.在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);
②若添加∠A=∠D.在△ABC和△DEF中,∵∠B=∠DEF,∠A=∠D,BC=EF,∴△ABC≌△DEF(AAS);
③若添加∠ACB=∠F.在△ABC和△DEF中,∵∠B=∠DEF,BC=EF,∠ACB=∠F,∴△ABC≌△DEF(ASA).
故答案為:AB=DE或∠A=∠D或∠ACB=∠F.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,線段,,一機(jī)器人在點(diǎn)處.
(1)若,求線段的長.
(2)在(1)的條件下,若機(jī)器人從點(diǎn)出發(fā),以的速度沿著的三條邊逆時(shí)針走一圈后回到點(diǎn),設(shè)行走的時(shí)間為,則當(dāng)為何值時(shí),是以點(diǎn)為直角頂點(diǎn)的直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點(diǎn)C在線段AB上,且AC=6cm,BC=4cm,點(diǎn)M,N分別是AC,BC的中點(diǎn),求線段MN的長度.
(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜出MN的長度嗎?請你用一句簡潔的話表述你發(fā)現(xiàn)的規(guī)律.
(3)對于(1)題,如果我們這樣敘述它:“已知線段AC=6cm,BC=4cm,點(diǎn)C在直線AB上,點(diǎn)M,N分別是AC,BC的中點(diǎn),求MN的長度.”結(jié)果會有變化嗎?如果有,求出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=的圖象既是_________圖形又是_________圖形,它有_________條對稱軸,且對稱軸互相_________,對稱中心是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好的治理西流湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買 10 臺污水處理設(shè)備.現(xiàn)有 A、B 兩種型號的設(shè)備,其中每臺的價(jià)格,月處理污水量如下表:
A 型 | B 型 | |
價(jià)格(萬元/臺) | a | b |
處理污水量(噸/月) | 240 | 200 |
經(jīng)調(diào)查:購買一臺 A 型設(shè)備比購買一臺 B 型設(shè)備多 2 萬元,購買 2 臺 A 型設(shè)備比購買 3 臺 B 型設(shè)備少 6 萬元.
(1)求 a,b 的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過 105 萬元,你認(rèn)為該公司 有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于 2040 噸,為了節(jié) 約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球運(yùn)動員去年共參加40場比賽,其中3分球的命中率為0.25,平均每場有12次3分球未投中.
(1)該運(yùn)動員去年的比賽中共投中多少個(gè)3分球?
(2)在其中的一場比賽中,該運(yùn)動員3分球共出手20次,小亮說,該運(yùn)動員這場比賽中一定投中了5個(gè)3分球,你認(rèn)為小亮的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程x2-2(m+1)x+m2=0.
(1)當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?
(2)為m選取一個(gè)合適的整數(shù),使方程有兩個(gè)不相等的實(shí)數(shù)根,并求這兩個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要在一塊長52 m,寬48 m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路,下面分別是小亮和小穎的設(shè)計(jì)方案.
小亮設(shè)計(jì)的方案如圖①所示,甬路寬度均為x m,剩余的四塊綠地面積共2300 m2.
小穎設(shè)計(jì)的方案如圖②所示,BC=HE=x,AB∥CD,HG∥EF,AB⊥EF,∠1=60°.
(1)求小亮設(shè)計(jì)方案中甬路的寬度x;
(2)求小穎設(shè)計(jì)方案中四塊綠地的總面積.(友情提示:小穎設(shè)計(jì)方案中的x與小亮設(shè)計(jì)方案中的x取值相同)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了慶祝校園藝術(shù)節(jié),準(zhǔn)備購買一批盆花布置校園.已知1盆A種花和2盆B種花一共需13元,2盆A種花和1盆B種花一共需11元.
(1)求1盆A種花和1盒B種花的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種盆花共100盆,并且A種盆花的數(shù)量不超過B種盆花數(shù)量的2倍,請求出A種盆花的數(shù)量最多是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com