【題目】如圖,在直角坐標系中,矩形ABCD的對角線AC經過坐標原點O,矩形的邊分別平行于坐標軸,點B在函數(shù)y=(k≠0,x>0)的圖像上,點D的坐標為(-4,1),則K的值為( )
A.B.C.4D.-4
【答案】D
【解析】
由于點B的坐標不能求出,但根據反比例函數(shù)的幾何意義只要求出矩形OEBF的面積也可,依據矩形的性質發(fā)現(xiàn)S矩形OGDH=S矩形OEBF,而S矩形OGDH可通過點D(-4,1)轉化為線段長而求得.,在根據反比例函數(shù)的所在的象限,確定k的值即可.
如圖,根據矩形的性質可得:S矩形OGDH=S矩形OEBF,
∵D(-4,1),
∴OH=4,OG=1,
∴S矩形OGDH=OHOG=4,
設B(a,b),則OE=a,OF=-b,
∴S矩形OEBF=OEOF=-ab=4,
又∵B(a,b)在函數(shù)y=(k≠0,x>0)的圖象上,
∴k=ab=-4
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點、在直線上,且,于點,且,以為直徑在的左側作半圓,于,且.
(1)若半圓上有一點,則的最大值為________;
(2)向右沿直線平移得到;
①如圖,若截半圓的的長為,求的度數(shù);
②當半圓與的邊相切時,求平移距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線:沿軸翻折得到拋物線.
(1)求拋物線的頂點坐標;
(2)橫、縱坐標都是整數(shù)的點叫做整點.
① 當時,求拋物線和圍成的封閉區(qū)域內(包括邊界)整點的個數(shù);
② 如果拋物線C1和C2圍成的封閉區(qū)域內(包括邊界)恰有個整點,求m取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(1,0),已知拋物線y=﹣x2+mx﹣2m(m是常數(shù)),頂點為P.
(1)當拋物線經過點A時,求頂點P坐標;
(2)等腰Rt△AOB,點B在第四象限,且OA=OB.當拋物線與線段OB有且僅有兩個公共點時,求m滿足的條件;
(3)無論m取何值,該拋物線都經過定點H.當∠AHP=45°,求此拋物線解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點D為OB的中點,點E是線段AB上的動點,連結DE,作DF⊥DE,交OA于點F,連結EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.
(1)如圖1,當t=3時,求DF的長.
(2)如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.
(3)連結AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我省某工廠為全運會設計了一款成本每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)銷售量y(件)是售價x(元/件)的一次函數(shù),當售價為23元/件時,每天銷售量為790件;當售價為25元/件,每天銷售量為750件.
(1)求y與x的函數(shù)關系;
(2)如果該工藝品最高不超過每件30元,那么售價定位每件多少元時,工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面內,將兩個全等的等腰直角三角形和擺放在一起,為公共頂點,,若固定不動,繞點旋轉,、與邊的交點分別為、(點不與點重合,點不與點重合).
(1)求證:;
(2)在旋轉過程中,試判斷等式是否始終成立,若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C將線段AB分成兩部分,若AC2=BCAB(AC>BC),則稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行拋物線課題研究時,由黃金分割點聯(lián)想到“黃金拋物線”,類似地給出“黃金拋物線”的定義:若拋物線y=ax2+bx+c,滿足b2=ac(b≠0),則稱此拋物線為黃金拋物線.
(Ⅰ)若某黃金拋物線的對稱軸是直線x=2,且與y軸交于點(0,8),求y的最小值;
(Ⅱ)若黃金拋物線y=ax2+bx+c(a>0)的頂點P為(1,3),把它向下平移后與x軸交于A(+3,0),B(x0,0),判斷原點是否是線段AB的黃金分割點,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,E,F分別是邊AB,AD上的動點,AE=DF,連接DE,CF交于點P,過點P作PK∥BC,且PK=2,若∠CBK的度數(shù)最大時,則BK長為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com