【題目】我省某工廠為全運會設計了一款成本每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)銷售量y(件)是售價x(元/件)的一次函數(shù),當售價為23元/件時,每天銷售量為790件;當售價為25元/件,每天銷售量為750件.
(1)求y與x的函數(shù)關(guān)系;
(2)如果該工藝品最高不超過每件30元,那么售價定位每件多少元時,工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?
【答案】(1)函數(shù)的關(guān)系式為y=-20x+1250;
(2)當售價定為30元/時,該工藝品每天獲得的利潤最大,最大利潤為6500元.
【解析】
(1)將x=23,y=790,x=25,y=750代入y=kx+b即可求得y與x的函數(shù)關(guān)系式;(2)先求得每天獲得的利潤w關(guān)于x的函數(shù)關(guān)系式,再求出當x=30時獲得的利潤最大.
解:(1)設y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),
把x=23,y=790,x=25,y=750代入y=kx+b得 ,
解得 ,
∴函數(shù)的關(guān)系式為y=-20x+1250;
(2)設該工藝品每天獲得的利潤為W元,
則W=y(x-20)=(-20x+1250)(x-20)=-10(x-41.25) 2 +9031.25,(20≤x≤30);
∵-20<0,
∴當20<x≤30時,w隨x的增大而增大.
所以當售價定為30元/件時,該工藝品每天獲得的利潤最大.
W 最大 =-20(30-41.25) 2 +9031.25=6500元.
答:當售價定為30元/時,該工藝品每天獲得的利潤最大,最大利潤為6500元.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線經(jīng)過點,、,,其中、是方程的兩根,且,過點的直線與拋物線只有一個公共點
(1)求、兩點的坐標;
(2)求直線的解析式;
(3)如圖2,點是線段上的動點,若過點作軸的平行線與直線相交于點,與拋物線相交于點,過點作的平行線與直線相交于點,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD對角線交于點O,BE∥AC,AE∥BD,EO與AB交于點F.
(1)求證:EO=DC;
(2)若菱形ABCD的邊長為10,∠EBA=60°,求:菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠POQ=60°,點A、B分別在射線OQ、OP上,且OA=2,OB=4,∠POQ的平分線交AB于C,一動點N從O點出發(fā),以每秒1個單位長度的速度沿射線OP向點B作勻速運動,MN⊥OB交射線OQ于點M.設點N運動的時間為t(0<t<2)秒.
(1)求證:△ONM∽△OAB;
(2)當MN=CM時,求t的值;
(3)設△MNC與△OAB重疊部分的面積為S.請求出S關(guān)于t的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC=6,BD=8,M、N分別是BC、CD上的動點,P是線段BD上的一個動點,則PM+PN的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求證:相似三角形對應角的角平分線之比等于相似比.要求:
①分別在給出的△ABC與△DEF中用尺規(guī)作出一組對應角的平分線,不寫作法,保留作圖痕跡;
②在完成作圖的基礎上,寫出已知、求證,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程
(1)4x2﹣9=0;
(2)3x2﹣4x﹣1=0;
(3)x2﹣2x﹣3=0(用配方法);
(4)2(x﹣3)2+x(x﹣3)=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com