【題目】在一款名為超級瑪麗的游戲中,瑪麗到達一個高為10米的高臺A,利用旗桿頂部的繩索,劃過90°到達與高臺A水平距離為17米,高為3米的矮臺B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點的高度MN.
【答案】OM=15米;MN=2米.
【解析】
作AE⊥OM,BF⊥OM,首先得出△AOE≌△OBF(AAS),進而得出CD的長,進而求出OM,MN的長即可.
解:
作AE⊥OM,BF⊥OM,
∵∠AOE+∠BOF=∠BOF+∠OBF=,
∴∠AOE=∠OBF,
在△AOE和△OBF中,
,
∴△AOE≌△OBF(AAS),
∴OE=BF,AE=OF,
即OE+OF=AE+BF=CD=17(m),
∵EF=EMFM=ACBD=103=7(m),
∴2EO+EF=17,
則2×EO=10,
所以OE=5m,OF=12m,
所以OM=OF+FM=15m,
又因為由勾股定理得ON=OA=13,
所以MN=1513=2(m).
答:旗桿的高度OM為15米,瑪麗在蕩繩索過程中離地面的最低點的高度MN為2米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=3,BC=6.求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC,△DEC均為直角三角形,B,C,E三點在一條直線上,過D作DM⊥AC于M.
(1)如圖1,若△ABC≌△DEC,且AB=2BC.
①過B作BN⊥AC于N,則線段AN,BN,MN之間的數(shù)量關(guān)系為: ;(直接寫出答案)
②連接ME,求的值;
(2)如圖2,若AB=CE=DE,DM=2,MC=1,求ME的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC 中,AB=CB,∠ABC=90°,F 為 AB 延長線上一點,點 E 在 BC 上,且 AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=25,求∠BFC 度數(shù).
(3)若∠CAE=15°,BF=3.求AE的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象 與x軸、y軸分別交于點A,B.
(1)求點A,B的坐標;
(2)M為ー次函數(shù)y=x+3的圖象上一點,若 △ABM與△ABO的面積相等,求點M的坐標;
(3)Q為y軸上的一點,若三角形ABQ為等腰三角形 ,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是由27個相同的小立方塊搭成的幾何體,它的三個視圖是3×3的正方形,若拿掉若干個小立方塊(幾何體不倒掉),其三個視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個數(shù)為( 。
A. 10 B. 12 C. 15 D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=∠C=90°,∠DAB與∠ADC的平分線相交于BC邊上的M點.有下列結(jié)論:①∠AMD=90°;②M為BC的中點;③AB+CD=AD;④S△ADM=S梯形ABCD;⑤M到AD的距離等于BC的一半.其中正確的結(jié)論有____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com