【題目】已知矩形ABCD,點(diǎn)E在AD邊上,DE>AE,連接BE,將△ABE沿著BE翻折得到△BFE,射線EF交BC于G,若點(diǎn)G為BC的中點(diǎn),F(xiàn)G=1,DE=6,則AE的長 .
【答案】4
【解析】解:設(shè)AE=EF=x,
∵DE=6,F(xiàn)G=1,
∴AD=x+6=BC,EG=x+1,
又∵G為BC的中點(diǎn),
∴BG= BC= ,
由折疊可得,∠AEB=∠GEB,
由AD∥BC,可得∠AEB=∠GBE,
∴∠GEB=∠GBE,
∴EG=BG,
∴x+1= ,
解得x=4,
即AE=4,
所以答案是:4.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的性質(zhì)的相關(guān)知識,掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ),以及對矩形的性質(zhì)的理解,了解矩形的四個角都是直角,矩形的對角線相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,成都市青羊區(qū)有一塊長為米,寬為米的長方形地塊,角上有四個邊長均為米的小正方形空地,開發(fā)商計劃將陰影部分進(jìn)行綠化.
(1)用含,的代數(shù)式表示綠化的面積是多少平方米?(結(jié)果寫成最簡形式)
(2)若,,求出綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AC是弦,AD是切線,CB⊥AD于B,CB與⊙O相交于點(diǎn)E,連接AE,若AE平分∠BAC,BE=1,則CE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)E、M在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC.
(1)若AB=4,AC=5,則BC邊的取值范圍是 ;
(2)點(diǎn)D為BC延長線上一點(diǎn),過點(diǎn)D作DE∥AC,交BA的延長線于點(diǎn)E,若∠E=55°,∠ACD=125°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為評估九年級學(xué)生的學(xué)習(xí)成績狀況,以應(yīng)對即將到來的中考做好教學(xué)調(diào)整,某中學(xué)抽取了部分參加考試的學(xué)生的成績作為樣本分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:
(1)求本中學(xué)成績類別為“中”的人數(shù);
(2)求出扇形圖中,“優(yōu)”所占的百分比,并將條形統(tǒng)計圖補(bǔ)充完整;
(3)該校九年級共有1000人參加了這次考試,請估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績達(dá)到優(yōu)秀?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com