【題目】如圖1,,的直徑,點上,連接,

1)求證:平分

2)如圖2,連接,點上,連接交于點,求證:;

3)在(2)的條件下,點上,連接,,,交于點,若,,求線段的長.

【答案】1)見解析;(2)見解析;(3

【解析】

1)連接,由,,,可證明,再根據(jù)全等三角形的性質(zhì),對應(yīng)角相等,即可證明;

2)根據(jù)同弧所對的圓周角相等,可知,由(1)知,得,又根據(jù)同圓半徑相等,得,,由三角形外角等于不相鄰兩內(nèi)角和可得,,進(jìn)而得到,由此可以證明;

3)過點,,,根據(jù),可知,設(shè),,則,由,,易知為等腰三角形,由,可知,得AB=10a;再由,可得,再在使用勾股定理,可求得;證明,可得,解RtCPF可得,則;由,可得,;解,得;解等腰,得,再由即可求得的值.

解:(1)如圖,連接

,,

,

平分;

2)由(1)知,

∵弧所對的圓周角相等,

,

,

,

;

3)過點,,

,

,

∴在中,

設(shè),則,

,

,

,

,

,

,

,

,,

中,

,

,

,(舍),

,

又∵,

,

,,

∴在中,

,

,

,

,

中,

,

,

∴在中,,

中,,

設(shè),,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的一部分如圖所示,頂點坐標(biāo)為,與軸的一個交點的坐標(biāo)為(-3,0),給出以下結(jié)論:①;②;③若為函數(shù)圖象上的兩點,則;④當(dāng)時方程有實數(shù)根,則的取值范圍是.其中正確的結(jié)論的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y12x與雙曲線y2交于點A,點B,過點AACy軸于點C,OC2,延長ACD,使CD4AC,連接OD

1)求k的值;

2)求∠AOD的大;

3)直接寫出當(dāng)y1y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線ACBD交于點O,分別過點C. DCE∥BD,DE∥AC,CEDE交于點E.

(1)求證:四邊形ODEC是矩形;

(2)當(dāng)∠ADB=60°,AD=2時,求EA的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線(是常數(shù),)與直線都經(jīng)過軸上的一點,且拋物線的頂點在直線上,則稱此直線與該拋物線具有“一帶一路”關(guān)系.此時,直線叫做拋物線的“帶線”,拋物線叫做直線的“路線”.

1)若直線與拋物線具有“一帶一路”關(guān)系,求的值;

2)若某“路線”的頂點在反比例函數(shù)的圖象上,它的“帶線”的解析式為,求此“路線”的解析式;

3)當(dāng)常數(shù)滿足時,請直接寫出拋物線的“帶線”軸,軸所圍成的三角形面積S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為O上一點,點C在直徑BA的延長線上,且CDA=CBD

1求證:CD是O的切線;

2O的半徑為1,CBD=30°,則圖中陰影部分的面積;

3過點B作O的切線交CD的延長線于點E若BC=12,tanCDA=,求BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=50°,圓O是△ABC的外接圓,AE為圓O的直徑,AEBC相交于點D,若AB=AD.則∠EAC=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年初新冠肺炎疫情爆發(fā)以來,國內(nèi)經(jīng)濟--度被按下暫停鍵,如今隨著國內(nèi)疫情防控形勢持續(xù)向好,各地開始進(jìn)人積極復(fù)工復(fù)產(chǎn)的新模式.某商家為降低疫情帶來的影響,刺激消費,吸引顧客,特此設(shè)計了一個游戲,其規(guī)則是:分別轉(zhuǎn)動如圖所示的兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤各一次,每次指針落在每一字母區(qū)域的機會均等(若指針恰好落在分界線上則重轉(zhuǎn)),當(dāng)兩個轉(zhuǎn)盤的指針?biāo)缸帜赶嗤瑫r,消費者就可以獲得一次八折優(yōu)惠價購買商品的機會.

1)用樹狀圖或列表的方法表示出游戲可能出現(xiàn)的所有結(jié)果;

2)若小亮參加一次游戲,則他能獲得八折優(yōu)惠價購買商品的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】駱駝被稱為沙漠之舟,它的體溫隨時間的變化而發(fā)生較大變化,其體溫()與時間(小時)之間的關(guān)系如圖1所示.

小清同學(xué)根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).

A.駱駝在時刻的體溫與0時體溫的絕對差(即差的絕對值)

B.駱駝從0時到時刻之間的最高體溫與當(dāng)日最低體溫的差

C.駱駝在時刻的體溫與當(dāng)日平均體溫的絕對差

D.駱駝從0時到時刻之間的體溫最大值與最小值的差

查看答案和解析>>

同步練習(xí)冊答案