【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀.如圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測得∠ABD=31°,2秒后到達(dá)C點(diǎn),測得∠ACD=50°

(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m)

【答案】
(1)解:在Rt△ABD中,AD=24m,∠B=31°,

∴tan31°= ,即BD= =40m,

在Rt△ACD中,AD=24m,∠ACD=50°,

∴tan50°= ,即CD= =20m,

∴BC=BD﹣CD=40﹣20=20m,

則B,C的距離為20m;


(2)解:根據(jù)題意得:20÷2=10m/s<15m/s,

則此轎車沒有超速.


【解析】(1)由圖可知BC=BD-CD,所以先求出BD和CD,則在Rt△ABD和Rt△ACD中分別利用三角函數(shù)的定義可得;
(2)先求出轎車的速度,再與15m/s比較即可判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列各數(shù)中0, ,a2+1,﹣(﹣ 2 , ﹣(﹣5)2 , x2+2x+2,|a﹣1|,|a|﹣1, ,有平方根的個數(shù)是個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為開展陽光體育活動,某班需要購買一批羽毛球拍和羽毛球,現(xiàn)了解情況如下:甲、乙兩家商店岀售同樣品牌的羽毛球拍和羽毛球,羽毛球拍毎副定價30元,羽毛球每盒定價5元,且兩家都有優(yōu)惠:甲店每買一副球拍贈一盒羽毛球;乙店全部按定價的9折優(yōu)惠.

(1)若該班需購買羽毛球拍5副,購買羽毛球(不小于5).當(dāng)購買多少盒羽毛球時,在兩家商店購買所花的錢相等?

(2)若需購買10副羽毛球拍,30盒羽毛球,怎樣購買更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式組整數(shù)解為1、2,如果把適合這個不等式組的整數(shù)組成有序數(shù)對,那么對應(yīng)在平面直角坐標(biāo)系上的點(diǎn)共有的個數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個質(zhì)點(diǎn)在第一象限及軸、軸上運(yùn)動,在第一秒鐘,它從原點(diǎn)運(yùn)動到,然后接著按圖中箭頭所示方向運(yùn)動,即,且每秒移動一個單位,那么第45秒時質(zhì)點(diǎn)所在位置的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).

(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點(diǎn)R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;

(3)如圖3,若△ARB∽△PEQ,求∠MON大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法正確的是( )

A.b2﹣4ac<0
B.abc<0
C.
D.a﹣b+c<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2 400 m,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4 min,在整個步行過程中,甲、乙兩人的距離y(m)與甲出發(fā)的時間t(min)之間的關(guān)系如圖所示,以下結(jié)論:①甲步行的速度為60 m/min;②乙走完全程用了32 min;③乙用16 min追上甲;④乙到達(dá)終點(diǎn)時,甲離終點(diǎn)還有300 m,其中正確的結(jié)論有______(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,

下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

同步練習(xí)冊答案