【題目】如圖,△ABC中,∠ACB=90°,AC=AN,BC=BM,則∠MCN=( )
A. 30°B. 45°C. 60°D. 55°
【答案】B
【解析】
設(shè)∠BMC=x,∠ANC=y.由BC=BM,根據(jù)等邊對(duì)等角得出∠BCM=∠BMC=x,利用三角形內(nèi)角和定理得出∠B=180°-2x.同理得到∠ACN=∠ANC=y,∠A=180°-2y.根據(jù)直角三角形兩銳角互余得出∠A+∠B=90°,那么x+y=135°,即∠BCM+∠ACN=135°,進(jìn)而求出∠MCN=∠BCM+∠ACN-∠ACB=45°.
設(shè)∠BMC=x,∠ANC=y.
∵BC=BM,
∴∠BCM=∠BMC=x,∠B=180°-2x.
∵AC=AN,
∴∠ACN=∠ANC=y,∠A=180°-2y.
∵△ABC為直角三角形,∠ACB=90°,
∴∠A+∠B=90°,
∴180°-2y+180°-2x=90°,
∴x+y=135°,
∴∠BCM+∠ACN=135°,
∴∠MCN=∠BCM+∠ACN-∠ACB=135°-90°=45°.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線1與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為m.
①求線段PE長(zhǎng)度的最大值;
②點(diǎn)P將線段AC分割成長(zhǎng)、短兩條線段PA、PC,如果較長(zhǎng)線段與AC之比等于,則稱(chēng)P為線段AC的“黃金分割點(diǎn)”,請(qǐng)直接寫(xiě)出使得P為線段AC黃金分割點(diǎn)的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P在該拋物線上(P點(diǎn)與A、B兩點(diǎn)不重合).如果△ABP的三邊滿(mǎn)足AP2+BP2=AB2,則稱(chēng)點(diǎn)P為拋物線y=ax2+bx+c(a≠0)的勾股點(diǎn).
(1)直接寫(xiě)出拋物線y=-x2+1的勾股點(diǎn)的坐標(biāo).
(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線的勾股點(diǎn),求拋物線的函數(shù)表達(dá)式.
(3)在(2)的條件下,點(diǎn)Q在拋物線上,求滿(mǎn)足條件S△ABQ=S△ABP的Q點(diǎn)(異于點(diǎn)P)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,,.長(zhǎng)為的線段在的邊上沿方向以的速度向點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)前點(diǎn)與點(diǎn)重合).過(guò),分別作的垂線交直角邊于,兩點(diǎn),線段運(yùn)動(dòng)的時(shí)間為.
若的面積為,寫(xiě)出與的函數(shù)關(guān)系式(寫(xiě)出自變量的取值范圍);
線段運(yùn)動(dòng)過(guò)程中,四邊形有可能成為矩形嗎?若有可能,求出此時(shí)t的值;若不可能,說(shuō)明理由;
為何值時(shí),以,,為頂點(diǎn)的三角形與相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對(duì)稱(chēng)的;
(2)寫(xiě)出點(diǎn)A1,C1的坐標(biāo)(直接寫(xiě)答案);A1 _________,C1 _________,
(3)的面積為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊(duì)在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)A駛向終點(diǎn)B,在整個(gè)行程中,龍舟離開(kāi)起點(diǎn)的距離y(米)與時(shí)間x(分鐘)的對(duì)應(yīng)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)起點(diǎn)A與終點(diǎn)B之間相距多遠(yuǎn)?
(2)哪支龍舟隊(duì)先出發(fā)?哪支龍舟隊(duì)先到達(dá)終點(diǎn)?
(3)分別求甲、乙兩支龍舟隊(duì)的y與x函數(shù)關(guān)系式;
(4)甲龍舟隊(duì)出發(fā)多長(zhǎng)時(shí)間時(shí)兩支龍舟隊(duì)相距200米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,OE∥AB交BC于點(diǎn)E.若AD=8cm,則OE的長(zhǎng)為( )
A. 3cm B. 4cm C. 6cm D. 8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(0,a),等腰直角三角形ODC的斜邊經(jīng)過(guò)點(diǎn)B,OE⊥AC,交AC于E,若OE=2,則△BOD與△AOE的面積之差為( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對(duì)稱(chēng)的.
(2)寫(xiě)出點(diǎn)的坐標(biāo)(直接寫(xiě)答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com