【題目】已知:如圖,RtABCRtABD中,∠ACB=∠ADB90°EAB中點(diǎn).

1)若兩個(gè)直角三角形的直角頂點(diǎn)在AB的異側(cè)(如圖1),連接CD,取CD中點(diǎn)F,連接EF、DECE,則DECE數(shù)量關(guān)系為 ,EFCD位置關(guān)系為 ;

2)若兩個(gè)直角三角形的直角頂點(diǎn)在AB的同側(cè)(如圖2),連接CD、DECE

①若∠CAB25°,∠DBA35°,判斷DEC的形狀,并說(shuō)明理由;

②若∠CAB+DBA,當(dāng)為多少度時(shí),DEC為等腰直角三角形,并說(shuō)明理由.

【答案】1;(2)①等邊三角形,見解析;②45°,理由見解析;

【解析】

1)根據(jù)直角三角形的斜邊中線等于斜邊的一半即可得到DE=CE,再根據(jù)等腰三角形的三線合一的性質(zhì)即可得到EFCD;

2)①先根據(jù)直角三角形的性質(zhì)得到△DEC是等腰三角形,再利用外角的性質(zhì)得到,根據(jù)平角的定義求出∠DEC,即可得到結(jié)論;

②由①得,DE=EC,再根據(jù)等腰直角三角形的性質(zhì)求出答案.

1DE=CE,EFCD

∵△ABD和△ABC是直角三角形,∠ACB=∠ADB90°EAB中點(diǎn),

DE=AB,CE=AB

DE=CE,

∵點(diǎn)FCD的中點(diǎn),

EFCD;

2)①△DEC等邊三角形,

RtABCRtABD中,∠ACB=∠ADB90°EAB中點(diǎn),

,

∴△DEC是等腰三角形,

, ,

且∠DEA、∠CEB分別是△DEB、△AEC的外角,

,

,

∴△DEC是等邊三角形;

②由①得DE=EC,

,

∵△DEC是等腰直角三角形, ,

,

,

∴當(dāng)45度時(shí),△DEC為等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲,乙兩組數(shù)據(jù)的折線圖如圖所示,設(shè)甲,乙兩組數(shù)據(jù)的方差分別為S2S2,則S2S2大小關(guān)系為(  )

A.S2S2B.S2S2C.S2S2D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:,,,垂足分別為,,

1)如圖1,①線段的數(shù)量關(guān)系是__________;

②請(qǐng)寫出線段,之間的數(shù)量關(guān)系并證明.

2)如圖2,若已知條件不變,上述結(jié)論②還成立嗎?如果不成立,請(qǐng)直接寫出線段,,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在中,,,點(diǎn)是斜邊的中點(diǎn),點(diǎn),分別在線段,上,

1)求證:為等腰直角三角形;

2)若的面積為7,求四邊形的面積;

3)如圖(2),如果點(diǎn)運(yùn)動(dòng)到的延長(zhǎng)線上時(shí),點(diǎn)在射線上且保持還是等腰直角三角形嗎.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,AB=3,BC=4,AC=5,在直線BC上有P點(diǎn),使PAC是以AC為腰的等腰三角形,則BP的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形的一個(gè)外角為100°,則這個(gè)等腰三角形的頂角為________;等腰三角形一腰上的高與腰的夾角為36°,則該等腰三角形的頂角為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,邊上的中點(diǎn).

(1),連接.判斷的形狀,并證明;

(2)分別是上的中線,連接.判斷的形狀,并說(shuō)明理由;

(3)分別是的平分線,連接.判斷的關(guān)系,不需證明;

(4)若分別在上任取一點(diǎn),且,連接.在不添加輔助線的情況下,你還能得到哪些不同于上面的正確結(jié)論?請(qǐng)寫出至少四條,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在進(jìn)行二次根式化簡(jiǎn)時(shí),我們有時(shí)會(huì)碰上如,一樣的式子,這樣的式子我們可以將其進(jìn)一步化簡(jiǎn),,以上這種化簡(jiǎn)的方法叫做分母有理化,請(qǐng)利用分母有理化解答下列問題:

1)化簡(jiǎn):;

2)若a的小數(shù)部分,求的值;

3)矩形的面積為3+1,一邊長(zhǎng)為2,求它的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm,如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為每秒2cm1cm,F(xiàn)Q⊥BC,分別交AC、BC于點(diǎn)PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<4).

(1)連接EF,若運(yùn)動(dòng)時(shí)間t=   時(shí),EF⊥AC;

(2)連接EP,當(dāng)△EPC的面積為3cm2時(shí),求t的值;

(3)△EQP∽△ADC,求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案