先化簡(jiǎn),再求值:
m2-2m+1
m2-1
÷(m-1-
m-1
m+1
)
,其中m=2-
3
分析:先根據(jù)分式混合運(yùn)算的法則把原式進(jìn)行化簡(jiǎn),再把m的值代入進(jìn)行計(jì)算即可.
解答:解:原式=
m-1 
m+1
÷
m2-1-m+1
m+1

=
m-1 
m+1
×
m+1
m(m-1)

=
1
m
,
當(dāng)m=2-
3
時(shí),原式=
1
2-
3
=2+
3
點(diǎn)評(píng):本題考查的是分式的化簡(jiǎn)求值,熟知分式混合運(yùn)算的法則是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:
m2-5m+6
m2-3m
•(m2+
m
m-2
)
,其中m=
4
5
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•畢節(jié)地區(qū))先化簡(jiǎn),再求值.
m2-4m+4
m2-1
÷
m-2
m-1
+
2
m-1
,其中m=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都一模)(1)計(jì)算:2-1-(2011-π)0+
3
cos30°-(-1)2011+|-6|
;
(2)解方程:2(
1
2
-x)2-(x-
1
2
)-1=0

(3)先化簡(jiǎn),再求值:
m2-2m+1
m2-1
÷(m-1-
m-1
m+1
)
,其中m=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:
m2-2m+1
m2-1
÷(m-1-
m-1
m+1
)
,其中m是分式方程
1
m-1
-
2
1-m
=1
的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:
m2-6m+9
m2-4
÷(m-
4m-9
m-2
)•
1
m
,其中m是方程2m2+4m-1=0的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案