【題目】一艘輪船沿正北方向航行,在A處測得北偏東21.3°方向有一座小島C,繼續(xù)向北航行60海里到達B處,測得小島C此時在輪船的北偏東63.5°方向上.之后,輪船繼續(xù)向北航行多少海里,距離小島C最近?

參考數(shù)據(jù):sin21.3°,tan21.3°sin63.5°,tan63.5°2

【答案】輪船繼續(xù)向北航行15海里,距離小島C最近.

【解析】

CCDABD,得到RtACDRtBCD,在直角△BCD中,即可利用BD表示出CD的長,再在直角△ACD中,利用三角函數(shù)即可求解.

CCDABD,得到RtACDRtBCD

設(shè)BD=x海里,在直角△BCD中,CD=BDtanCBD=xtan63.5°.

在直角△ACD中,AD=AB+BD=(60+x)海里,

tanA=,CD=(60+xtan21.3°,

xtan63.5°=(60+xtan21.3°,

2x=60+x),解得:x=15

答:輪船繼續(xù)向北航行15海里,距離小島C最近.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三個頂點的坐標分別為、.

(1)關(guān)于y軸成軸對稱,則三個頂點坐標分別為_____________________,____________;

(2)Px軸上一點,則的最小值為____________;

(3)計算的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點上,,垂足為,弧等于弧,分別交、于點、

判斷的形狀,并說明理由;

若點和點的兩側(cè),、的延長線交于點,的延長線交于點,其余條件不變,中的結(jié)論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點上的一點,在的延長線上取點,使交于點,于點

求證:(1)的切線;(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,△ABC⊙O的內(nèi)接三角形,AB=AC,P 的中點連結(jié)PA,PB,PC.

(1)如圖(a),∠BPC=60°,求證:AC=AP;

(2)如圖(b),sin∠BPC=,tan∠PAB的值.

     

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖將兩張長為,寬為的矩形紙條交叉,重疊部分是一個特殊四邊形,則這個特殊四邊形周長的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知 ABC 的三個頂點的坐標分別為 A(-3,5),B(-2,1).

1)請在如圖所示的網(wǎng)格內(nèi)畫出平面直角坐標系,并寫出 C 點坐標;

2)先將ABC 沿 x 軸翻折,再沿 x 軸向右平移 4 個單位長度后得到A1B1C1,請 在網(wǎng)格內(nèi)畫出A1B1C1;

3)在(2)的條件下,ABC 的邊 AC 上一點 Ma,b)的對應點 M1 的坐標是 .(友情提醒:畫圖結(jié)果確定后請用黑色簽字筆加黑)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,ABC=90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標明字母)

①作線段AC的垂直平分線l,交AC于點O;

②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;

③連接DA、DC

(2)判斷四邊形ABCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點在原點,對稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(的左側(cè)),且點坐標為.平行于軸的直線點.

求一次函數(shù)與二次函數(shù)的解析式;

判斷以線段為直徑的圓與直線的位置關(guān)系,并給出證明;

把二次函數(shù)的圖象向右平移個單位,再向下平移個單位,二次函數(shù)的圖象與軸交于,兩點,一次函數(shù)圖象交軸于點.當為何值時,過,三點的圓的面積最?最小面積是多少?

查看答案和解析>>

同步練習冊答案