【題目】計算:( ﹣1)0 ×sin60°+(﹣2)2

【答案】解:( ﹣1)0 ×sin60°+(﹣2)2
=1﹣2 × +4
=1﹣3+4
=2.
【解析】直接利用特殊角的三角函數(shù)值以及結合零指數(shù)冪的性質以及二次根式的性質分別化簡進而求出答案.此題主要考查了實數(shù)運算,正確利用相關性質化簡各數(shù)是解題關鍵.
【考點精析】本題主要考查了零指數(shù)冪法則和特殊角的三角函數(shù)值的相關知識點,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC

(1)如圖.當COD在∠AOB的內部時

AOC=39°40′,求DOE的度數(shù);

AOC=α,求DOE的度數(shù)(用含α的代數(shù)式表示),

(2)如圖,當COD在AOB的外部時,

請直接寫出AOC與DOE的度數(shù)之間的關系;

AOC內部有一條射線OF,滿足∠AOC+2∠BOE=4∠AOF,寫出AOF與DOE的度數(shù)之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了進行資源的再利用,學校準備針對庫存的桌椅進行維修,現(xiàn)有甲、乙兩木工組,甲每天修桌凳14 套,乙每天比甲多7套,甲單獨修完這些桌凳比乙單獨修完多用20天.學校每天付甲組80元修理費,付乙組120元修理費.

(1)請問學校庫存多少套桌凳?

(2)在修理過程中,學校要派一名工人進行質量監(jiān)督,學校負擔他每天10元生活補助費,現(xiàn)有三種修理方案:①由甲單獨修理;②由乙單獨修理;③甲、乙合作同時修理.你選哪種方案,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣bx﹣2(a≠0)的圖象的頂點在第四象限,且過點(﹣1,0),當a﹣b為整數(shù)時,ab的值為(  )
A.或1
B.或1
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為

(1)若是“相伴數(shù)對”,求的值;

(2)寫出一個“相伴數(shù)對” ,其中

(3)若是“相伴數(shù)對”,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣x+1的圖象與x軸、y軸分別交于點A、B,以AB為邊在第一象限內做等邊ABC

(1)求ABC的面積和點C的坐標;

(2)如果在第二象限內有一點P(a,),試用含a的代數(shù)式表示四邊形ABPO的面積.

(3)在x軸上是否存在點M,使MAB為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.
(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=ACAD⊥BC,CE⊥AB,AE=CE.求證:

1△AEF≌△CEB

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學生社團為了解本校學生喜歡球類運動的情況,隨機抽取了若干名學生進行問卷調查,要求每位學生只能填寫一種自己喜歡的球類運動,并將調查的結果繪制成如下的兩幅不完整的統(tǒng)計圖.

請根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
(1)參加調查的人數(shù)共有人;在扇形圖中,m=;將條形圖補充完整;
(2)如果該校有3500名學生,則估計喜歡“籃球”的學生共有多少人?
(3)該社團計劃從籃球、足球和乒乓球中,隨機抽取兩種球類組織比賽,請用樹狀圖或列表法,求抽取到的兩種球類恰好是“籃球”和“足球”的概率.

查看答案和解析>>

同步練習冊答案