【題目】某校學(xué)生會(huì)向全校2400名學(xué)生發(fā)起了愛心捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖1和圖2,請根據(jù)相關(guān)信息,解答系列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 人,圖1中m的值是 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).
【答案】(1)50,32;(2)16,15;(3)768.
【解析】
(1)根據(jù)題意由5元的人數(shù)及其所占百分比可得抽樣調(diào)查的學(xué)生人數(shù),用10元人數(shù)除以抽樣調(diào)查的學(xué)生人數(shù)可得m的值;
(2)由題意根據(jù)統(tǒng)計(jì)圖可以分別得到本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)由題意根據(jù)全校總?cè)藬?shù)捐款金額為10元的學(xué)生人數(shù)所占乘以抽樣調(diào)查的學(xué)生人數(shù)的比例,即可估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).
解:(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為4÷8%=50人,
∵,
.
故答案為:50;32.
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是:(元);
本次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是:15元.
(3)估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù)為2400×32%=768人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個(gè)結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點(diǎn)為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)=的圖象經(jīng)過點(diǎn)A(1,0),與反比例函數(shù)=(>0)的圖象相交于點(diǎn)B(m,1).
(1)求m的值和一次函數(shù)的解析式;
(2)結(jié)合圖象直接寫出:當(dāng)>0時(shí),不等式>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于M,AE⊥BD于E,交CD于N,連AC
(1)求證:AC=AN;
(2)若OM∶OC=3∶5,AB=5,求⊙O的半徑;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時(shí)期數(shù)學(xué)家劉徽編撰的最早一部測量數(shù)學(xué)著作《海島算經(jīng)》中有一題:今有望海島,立兩表齊高三丈,前后相去千步,令后表與前表參相直.從前表卻行一百二十三步,人目著地,取望島峰,與表末參合.從后表卻行一百二十七步,人目著地,取望島峰,亦與表末參合.問島高幾何?
譯文:今要測量海島上一座山峰AH的高度,在B處和D處樹立標(biāo)桿BC和DE,標(biāo)桿的高都是3丈,B和D兩處相隔1000步(1丈=10尺,1步=6尺),并且AH,CB和DE在同一平面內(nèi).從標(biāo)桿BC后退123步的F處可以看到頂峰A和標(biāo)桿頂端C在同一直線上;從標(biāo)桿ED后退127步的G處可以看到頂峰A和標(biāo)桿頂端E在同一直線上.則山峰AH的高度是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0).
(1)在圖1中畫出△ABC關(guān)于y軸對稱的△A1B1C1,直接寫出點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo).
(2)在圖2中,以點(diǎn)O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對應(yīng)邊的比為2:1(畫出一種即可).直接寫出點(diǎn)C的對應(yīng)點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
如圖 a,在△ABC 中,D 是 BC 的中點(diǎn).如果用 SABC 表示△ABC 的面積,則由等底等高的三角形的面積相等,可得.同理,如圖 b,在 ABC 中,D、E 是 BC 的三等分點(diǎn),可得
結(jié)論應(yīng)用
已知△ABC 的面積為 42,請利用上面的結(jié)論解決下列問題:
(1)如圖 1,若 D、E 分別是 AB、AC 的中點(diǎn),CD 與 BE交于點(diǎn) F,則△DBF 的面積為 ;
類比推廣
(2)如圖 2,若 D、E 是 AB 的三等分點(diǎn),F、G 是 AC 的 三等分點(diǎn),CD 分別交 BF、BG 于 M、N,CE 分別交 BF、BG 于 P、Q,求△BEP 的面積;
(3)如圖2,問題(2)中的條件不變,求四邊形EPMD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)手操作:
如圖,已知AB∥CD,點(diǎn)A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點(diǎn),再分別以點(diǎn)E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M.
問題解決:
(1)若∠ACD=78°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為點(diǎn)N,求證:△CAN≌△CMN.
實(shí)驗(yàn)探究:
(3)直接寫出當(dāng)∠CAB的度數(shù)為多少時(shí)?△CAM分別為等邊三角形和等腰直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com