【題目】平面直角坐標系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三點,D(1,m)是一個動點,當△ACD的周長最小時,△ABD的面積為( )
A.
B.
C.
D.

【答案】C
【解析】解:連接BC,

交直線x=1與點D,此時三角形ACD的周長最小,
設BC的解析式為 把B(3,0),C(0,-1)分別代入得,
把x=1,代入得 ,
∴△ABD的面積為 .
所以答案是:C.
【考點精析】利用線段的基本性質和三角形的面積對題目進行判斷即可得到答案,需要熟知線段公理:所有連接兩點的線中,線段最短.也可簡單說成:兩點之間線段最短;連接兩點的線段的長度,叫做這兩點的距離;線段的大小關系和它們的長度的大小關系是一致的;三角形的面積=1/2×底×高.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣2,4),B(4,2),C(2,﹣1)

(1)作△ABC關于x軸的對稱圖形△A1B1C1 , 寫出點C關于x軸的對稱點C1的坐標;
(2)P為x軸上一點,請在圖中畫出使△PAB的周長最小時的點P并直接寫出此時點P的坐標(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于正比例函數(shù)y=2x的圖象,下列敘述錯誤的是(  )

A. 點(﹣1,﹣2)在這個圖象上 B. 函數(shù)值y隨自變量x的增大而減小

C. 圖象關于原點對稱 D. 圖象經過一、三象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示.

A

B

進價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

設商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元(毛利潤=(售價-進價)×銷售量).
(1)該商場計劃購進A,B兩種品牌的教學設備各多少套?
(2)通過市場調研,該商場決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過69萬元,問A種設備購進數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設備共8臺,用于同時治理不同成分的污水,若購進A型2臺、B型3臺需54萬元,購買A型4臺、B型2臺需68萬元.
(1)求出A型、B型污水處理設備的單價;
(2)經核實,一臺A型設備一個月可處理污水220噸,一臺B型設備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1 565噸,請你為該企業(yè)設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD= AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①∠AED=∠CED;②AB=HF,③BH=HF;④BC﹣CF=2HE;⑤OE=OD;其中正確結論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學習小組經過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.

(1)作AD⊥BC于D,設BD = x,用含x的代數(shù)式表示CD;
(2)根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型,求出x;
(3)利用勾股定理求出AD的長,再計算三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:等邊△ABC的邊長為4,點P在線段AB上,點D在線段AC上,且△PDE為等邊三角形,當點P與點B重合時(如圖1),AD+AE的值為   

[類比探究]在上面的問題中,如果把點P沿BA方向移動,使PB=1,其余條件不變(如圖2),AD+AE的值是多少?請寫出你的計算過程;

[拓展遷移]如圖3,△ABC中,AB=BC,∠ABC=a,點P在線段BA延長線上,點D在線段CA延長線上,在△PDE中,PD=PE,∠DPE=a,設AP=m,則線段AD、AE有怎樣的等量關系?請用含m,a的式子直接寫出你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠CAB.

(1)求證:直線BF是⊙O的切線;

(2)若AB=5,sin∠CBF=,求BC和BF的長.

查看答案和解析>>

同步練習冊答案