【題目】如圖,∠ABC=45°,△ADE是等腰直角三角形,AE=AD,頂點(diǎn)A、D分別再∠ABC的兩邊BA、BC上滑動(dòng)(不與點(diǎn)B重合),△ADE的外接圓交BC于點(diǎn)F,O為圓心.
(1)直接寫出∠AFE的度數(shù);
(2)當(dāng)點(diǎn)D在點(diǎn)F的右側(cè)時(shí),①求證:EF﹣DF=AF;
②若AB=,<BE≤,求⊙O的面積S的取值范圍.
【答案】(1)45°;(2)①證明見解析;②16π<S<40π.
【解析】
試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)和圓周角定理即可得到結(jié)論;
(2)①根據(jù)已知條件得到AB=AF,∠BAF=90°推出△ABD≌△AFE,根據(jù)全等三角形的性質(zhì)得到BD=EF,由線段的和差得到EF﹣DF=BD﹣DF=BF,根據(jù)三角函數(shù)的定義得到BF=AF,即可得到結(jié)論;
②由(2)①得BD=EF,根據(jù)已知條件得到BF=8,根據(jù)勾股定理得到<BE≤,求得8<EF<12,于是得到S=(x﹣4)2+8π,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
試題解析:(1)∠AFE=45°,連接AF,∵△ADE是等腰直角三角形,∴∠AFE=∠EDF=45°;
(2)①連接EF,∵∠EFD=∠EAD=90°,∴∠BFE=90°,∵∠AFE=45°,∴∠AFB=∠AFE=45°,∴AB=AF,∠BAF=90°,∴∠BAD=∠FAE,在△ABD和△AFE中,∵AD=AE,∠BAD=∠FAE,AB=AF,∴△ABD≌△AFE,∴BD=EF,∴EF﹣DF=BD﹣DF=BF,∵AF=BFcos∠AFB=BF,即BF=AF,∴EF﹣DF=AF;
②由(2)①得BD=EF,∵∠BAF=90°,AB=,∴BF===8,設(shè)BD=x,則EF=x,DF=x﹣8,∵BE2=EF2+BF2,<BE≤,∴128<EF2+82<208,∴8<EF<12,即8<x<12,∴S=DE2= [x2+(x﹣8)2]=(x﹣4)2+8π,∵>0,∴拋物線的開口向上,∵拋物線的對(duì)稱軸為直線x=4,∴當(dāng)8<x<12時(shí),S隨x的增大而增大,∴16π<S<40π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.
(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為6500元,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來完成.則該工程施工費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅棗豐收了,為了運(yùn)輸方便,小華的爸爸打算把一個(gè)長(zhǎng)為(a+2b)cm、寬為(a+b)cm的長(zhǎng)方形紙板制成一個(gè)有底無(wú)蓋的盒子,在長(zhǎng)方形紙板的四個(gè)角各截去一個(gè)邊長(zhǎng)為 bcm的小正方形,然后沿折線折起即可,如圖所示,現(xiàn)將盒子的外表面貼上彩色花板.
(1)則至少需要彩紙的面積是多少?
(2)當(dāng)a=8,b=6時(shí),求至少需要彩紙的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與坐標(biāo)原點(diǎn)O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)點(diǎn)P從A點(diǎn)出發(fā)也以每秒1個(gè)單位長(zhǎng)度的速度沿矩形ABCD的邊AB經(jīng)過點(diǎn)B向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),矩形ABCD和點(diǎn)P同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=5時(shí),請(qǐng)直接寫出點(diǎn)D、點(diǎn)P的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段AB或線段BC上運(yùn)動(dòng)時(shí),求出△PBD的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;
(3)點(diǎn)P在線段AB或線段BC上運(yùn)動(dòng)時(shí),作PE⊥x軸,垂足為點(diǎn)E,當(dāng)△PEO與△BCD相似時(shí),求出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=5cm,BP、CP分別是∠ABC和∠ACB的角平分線,且PD∥AB,PE∥AC,則△PDE的周長(zhǎng)是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.﹣a2?(﹣a3)=a6
B.(a2)﹣3=a﹣6
C.( )﹣2=﹣a2﹣2a﹣1
D.(2a+1)0=1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com