【題目】如圖1,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與坐標(biāo)原點(diǎn)O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)點(diǎn)P從A點(diǎn)出發(fā)也以每秒1個(gè)單位長(zhǎng)度的速度沿矩形ABCD的邊AB經(jīng)過點(diǎn)B向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),矩形ABCD和點(diǎn)P同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t=5時(shí),請(qǐng)直接寫出點(diǎn)D、點(diǎn)P的坐標(biāo);

(2)當(dāng)點(diǎn)P在線段AB或線段BC上運(yùn)動(dòng)時(shí),求出PBD的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;

(3)點(diǎn)P在線段AB或線段BC上運(yùn)動(dòng)時(shí),作PEx軸,垂足為點(diǎn)E,當(dāng)PEO與BCD相似時(shí),求出相應(yīng)的t值.

【答案】(1)D(﹣4,3),P(﹣12,8);(2);(3)6.

【解析】

試題分析:(1)延長(zhǎng)CD交x軸于M,延長(zhǎng)BA交x軸于N,則CMx軸,BNx軸,ADx軸,BNDM,由矩形的性質(zhì)得出和勾股定理求出BD,BO=15,由平行線得出ABD∽△NBO,得出比例式,求出BN、NO,得出OM、DN、PN,即可得出點(diǎn)D、P的坐標(biāo);

(2)當(dāng)點(diǎn)P在邊AB上時(shí),BP=6﹣t,由三角形的面積公式得出S=BPAD;當(dāng)點(diǎn)P在邊BC上時(shí),BP=t﹣6,同理得出S=BPAB;即可得出結(jié)果;

(3)設(shè)點(diǎn)D(,);分兩種情況:當(dāng)點(diǎn)P在邊AB上時(shí),P(,),由時(shí);分別求出t的值;

當(dāng)點(diǎn)P在邊BC上時(shí),P(,);由時(shí),分別求出t的值即可.

試題解析:(1)延長(zhǎng)CD交x軸于M,延長(zhǎng)BA交x軸于N,如圖1所示:則CMx軸,BNx軸,ADx軸,BNDM,四邊形ABCD是矩形,∴∠BAD=90°,CD=AB=6,BC=AD=8,BD==10,當(dāng)t=5時(shí),OD=5,BO=15,ADNO,∴△ABD∽△NBO,,即,BN=9,NO=12,OM=12﹣8=4,DM=9﹣6=3,PN=9﹣1=8,D(﹣4,3),P(﹣12,8);

(2)如圖2所示:當(dāng)點(diǎn)P在邊AB上時(shí),BP=6﹣t,S=BPAD=(6﹣t)×8=﹣4t+24;

當(dāng)點(diǎn)P在邊BC上時(shí),BP=t﹣6,S=BPAB=(t﹣6)×6=3t﹣18;

綜上所述:;

(3)設(shè)點(diǎn) D(,);

當(dāng)點(diǎn)P在邊AB上時(shí),P(,),若時(shí),,解得:t=6;

時(shí),,解得:t=20(不合題意,舍去);

當(dāng)點(diǎn)P在邊BC上時(shí),P(,),若時(shí),,解得:t=6;

時(shí),,解得:(不合題意,舍去);

綜上所述:當(dāng)t=6時(shí),PEO與BCD相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )(可以看第4頁(yè)課本)
A.正整數(shù)、負(fù)整數(shù)和零統(tǒng)稱整數(shù)
B.正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱有理數(shù)
C.零既可以是正整數(shù),也可以是負(fù)分?jǐn)?shù)
D.所有的分?jǐn)?shù)都是有理數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點(diǎn)o和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱軸與x軸交于點(diǎn)D.直線y=﹣2x﹣1經(jīng)過拋物線上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)F.

(1)求m的值及該拋物線對(duì)應(yīng)的解析式;

(2)P(x,y)是拋物線上的一點(diǎn),若SADP=SADC,求出所有符合條件的點(diǎn)P的坐標(biāo);

(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形.若能,請(qǐng)直接寫出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班50名學(xué)生的一次安全知識(shí)競(jìng)賽成績(jī)滿分為10分布如表所示

成績(jī)

0

1

2

3

4

5

6

7

8

9

10

人數(shù)(人)

0

0

0

1

0

1

3

5

6

19

15

這次安全知識(shí)競(jìng)賽成績(jī)的眾數(shù)是( )

A. 5 B. 6 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線yx2向上平移2個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度后,得到的拋物線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a為方程x2+x50的解,則2a2+2a+1的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC=45°,ADE是等腰直角三角形,AE=AD,頂點(diǎn)A、D分別再ABC的兩邊BA、BC上滑動(dòng)(不與點(diǎn)B重合),ADE的外接圓交BC于點(diǎn)F,O為圓心.

(1)直接寫出AFE的度數(shù);

(2)當(dāng)點(diǎn)D在點(diǎn)F的右側(cè)時(shí),①求證:EF﹣DF=AF;

②若AB=,BE,求O的面積S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以點(diǎn)A為頂點(diǎn)作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE.

(1)試判斷BD、CE的數(shù)量關(guān)系,并說明理由;
(2)延長(zhǎng)BD交CE于點(diǎn)F,試求∠BFC的度數(shù);
(3)把兩個(gè)等腰直角三角形按如圖2放置,(1)中的結(jié)論是否仍成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD∥GE,AQ平分∠FAC,交BD于Q,∠GFA=50°,∠Q=25°,則∠ACB的度數(shù)( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案