梯形ABCD中ADBC,E是AB的中點,過E作兩底的平行線交DC于F,則下面結論錯誤的是( 。
A.EF平分線段AC
B.梯形上下底間任意兩點的連線段被EF平分
C.梯形EBCF與梯形AEFD周長之差的絕對值等于梯形兩底之差的絕對值
D.梯形EBCF的面積比梯形AEFD的面積大
根據(jù)題意可知EF是梯形ABCD的中位線,
則A正確,因為EF是梯形ABCD的中位線,所以FG是△ACD的中位線,則EF平分線段AC.
B正確,因為EF是梯形ABCD的中位線,再根據(jù)平行線分線段成比例,則梯形上下底間任意兩點的連線段被EF平分.
C正確,因為梯形EBCF的周長為EF+EB+BC+CF,梯形AEFD周長為AE+AD+DF+EF,又因為EF是梯形ABCD的中位線,所以梯形EBCF與梯形AEFD周長之差的絕對值等于梯形兩底之差的絕對值.
D錯誤,因為根據(jù)題意不能判斷AD和BC誰是上底誰是下底,所以不能判斷梯形EBCF的面積比梯形AEFD的面積大.
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ADBC,AB=DC,P是BC上的一個動點,PE⊥AB,PF⊥CD,CM⊥AB,垂足分別為E、F、M,則PE、PF、CM三者間存在怎樣的數(shù)量關系?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,等腰梯形ABCD中,ADBC,∠DBC=45°,翻折梯形ABCD,使點B與點D重合,折痕分別交邊AB、BC于點F、E,若AD=2,BC=8.
(1)求BE的長;
(2)求∠CDE的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

等腰梯形中位線長15cm,一個底角為60°,且一條對角線平分這個角,則這個等腰梯形周長是______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.
(1)請寫出一個你學過的特殊四邊形中是等對邊四邊形的圖形的名稱;
(2)如圖,在△ABC中,點D,E分別在AB,AC上,設CD,BE相交于點O,
若∠A=60°,∠DCB=∠EBC=
1
2
∠A.請你寫出圖中一個與∠A相等的角,并猜想圖中哪個四邊形是等對邊四邊形;
(3)在△ABC中,如果∠A是不等于60°的銳角,點D,E分別在AB,AC上,且∠DCB=∠EBC=
1
2
∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,在梯形ABCD中,ADBC,中位線EF交BD于點O,若OE:OF=1:4,則AD:BC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,在梯形ABCD中,ADBC,對角線AC⊥BD,且AC=12,BD=5,則這個梯形中位線的長等于______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

等腰梯形的上、下底的長分別為6厘米、12厘米,它的腰長是5厘米,則它的面積是______平方厘米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,∠B=90°,AB=8cm,AD=16cm,BC=22cm,點P從點A出發(fā),以1cm/s的速度向點D運動,點Q從點C同時出發(fā),以3cm/s的速度向點B運動,其中一個動點到達端點時,另一個動點也隨之停止運動.
(1)經(jīng)過多少時間,四邊形ABQP成為矩形?
(2)經(jīng)過多少時間,四邊形PQCD成為等腰梯形?
(3)問四邊形PBQD是否能成為菱形?若能,求出運動時間;若不能,請說明理由,并探究如何改變Q點的速度(勻速運動),使四邊形PBQD在某一時刻為菱形,求點Q的速度.

查看答案和解析>>

同步練習冊答案