【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有(

A.6個
B.5個
C.4個
D.3個

【答案】A
【解析】解:①∵AB=AC,
∴△ABC是等腰三角形;
②∵AB=AC,
∴∠B=∠C,
∵BD,CE是角平分線,
∴∠ABD=∠ACE,∠OBC=∠OCB,
∴△BOC是等腰三角形;
③∵△EOB≌△DOC(ASA),
∴OE=OD,ED∥BC
∴△EOD是等腰三角形;
④∵ED∥BC,
∴∠AED=∠B,∠ADE=∠C,
∴∠AED=∠ADE,
∴△AED是等腰三角形;
⑤∵△ABC是等腰三角形,BD,CE是角平分線,
∴∠ABC=∠ACB,∠ECB=∠DBC,
又∵BC=BC,
∴△EBC≌△DCB,
∴BE=CD,
∴AE=AD,
= ,∠A=∠A,
∴△AED∽△ABC,
∴∠AED=∠ABC,
∴∠ABC+∠BED=180°,
∴DE∥BC,
∴∠EDB=∠DBC=∠EBD,
∴ED=EB,
即△BED是等腰三角形,
同理可證△EDC是等腰三角形.
故選A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解角平分線的性質(zhì)定理的相關(guān)知識,掌握定理1:在角的平分線上的點(diǎn)到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點(diǎn),在這個角的平分線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于G.則下列結(jié)論中錯誤的是(

A.AD=BE
B.BE⊥AC
C.△CFG為等邊三角形
D.FG∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,AB=16.點(diǎn)P是斜邊AB上一點(diǎn).過點(diǎn)P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列五個命題:直徑是弦,優(yōu)弧大于劣弧,等弧的弧長相等,平分弦的直徑垂直于弦,等弧所對的弦相等.其中正確的有(  )個.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:所謂完全平方式,就是對于一個整式A,如果存在另一個整式B,使得A=B2 , 則稱A是完全平方式,例如a4=(a22 , 4a2﹣4a+1=(2a﹣1)2
(1)下列各式中完全平方式的編號有①a6;②a2+ab+b2;③x2﹣4x+4y2④m2+6m+9;⑤x2﹣10x﹣25;⑥4a2+2ab+
(2)若4x2+xy+my2和x2﹣nxy+64y2都是完全平方式,求m2015n2016的值;
(3)多項(xiàng)式49x2+1加上一個單項(xiàng)式后,使它能成為一個完全平方式,那么加上的單項(xiàng)式可以是哪些?(請羅列出所有可能的情況,直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A-5,4)關(guān)于原點(diǎn)的對稱點(diǎn)A/的坐標(biāo)為(。

A.(5,4)B.(5,-4)C.(-5,4D.-5-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 兩個數(shù)的和一定比這兩個數(shù)的差大 B. 零減去一個數(shù),仍得這個數(shù)

C. 兩個數(shù)的差小于被減數(shù) D. 正數(shù)減去負(fù)數(shù),結(jié)果是正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠1與∠2,∠3與∠4之間各是哪兩條直線被哪一條直線所截而形成的什么角?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)分別為A(0,4),B(3,4),C(4,﹣1).
(1)試在平面直角坐標(biāo)系中,畫出△ABC;

(2)若△A1B1C1與△ABC關(guān)于x軸對稱,寫出A1、B1、C1的坐標(biāo);
(3)在x軸上找到一點(diǎn)P,使點(diǎn)P到點(diǎn)A、B兩點(diǎn)的距離和最。
(4)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案