【題目】已知:如圖,在平行四邊形ABCD中,E、F分別是邊BC , CD上的點,且EF∥BD , AE、AF分別交BD與點G和點H , BD=12,EF=8.求:
(1) 的值;
(2)線段GH的長.
【答案】
(1)解答:∵EF∥BD,
∴ ,
∵BD=12,EF=8,
∴ ,
∴ ,
∵四邊形ABCD是平行四邊形,∴AB=CD,
∴ ;
(2)解答:∵DF∥AB,
∴ ,
∴ ,
∵EF∥BD,
∴ ,
∴ ,
∴GH=6.
【解析】分析:(1)根據(jù)EF∥BD , 則 ,再利用平行四邊形的性質(zhì)求得 的值;(2)利用DF∥AB , 則 ,進而得出 ,即可求出GH .
【考點精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和平行線分線段成比例的相關知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;三條平行線截兩條直線,所得的對應線段成比例.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AD>AB.
(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線x=﹣4與x軸交于點E,一開口向上的拋物線過原點交線段OE于點A,交直線x=﹣4于點B,過B且平行于x軸的直線與拋物線交于點C,直線OC交直線AB于D,且AD:BD=1:3.
(1)求點A的坐標;
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB , 他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為( 。.
A.12 m
B.13.5 m
C.15 m
D.16.5 m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊三角形的土地,它的一條邊BC=100米,BC邊上的高AH=80米.某單位要沿著邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上.若大樓的寬是40米(即DE=40米),求這個矩形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一張直角三角形紙片,記作△ABC,其中∠B=90°.按如圖方式剪去它的一個角(虛線部分),在剩下的四邊形ADEC中,若∠1=165°,則∠2的度數(shù)為°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com