【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0).對(duì)于下列命題:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正確的有( )
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)
【答案】B
【解析】
首先根據(jù)二次函數(shù)圖象開口方向可得a>0,根據(jù)圖象與y軸交點(diǎn)可得c<0,再根據(jù)二次函數(shù)的對(duì)稱軸x=-,結(jié)合圖象與x軸的交點(diǎn)可得對(duì)稱軸為x=1,結(jié)合對(duì)稱軸公式可判斷出①的正誤;根據(jù)對(duì)稱軸公式結(jié)合a的取值可判定出b<0,根據(jù)a、b、c的正負(fù)即可判斷出②的正誤;利用a-b+c=0,求出a-2b+4c<0,再利用當(dāng)x=4時(shí),y>0,則16a+4b+c>0,由①知,b=-2a,得出8a+c>0.
根據(jù)圖象可得:a>0,c>0,對(duì)稱軸:.
①∵它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0),∴對(duì)稱軸是x=1,
∴.∴b+2a=0.故命題①錯(cuò)誤.
②∵a>0,,∴b<0.
又c<0,∴abc>0.故命題②錯(cuò)誤.
③∵b+2a=0,∴a﹣2b+4c=a+2b﹣4b+4c=﹣4b+4c.
∵a﹣b+c=0,∴4a﹣4b+4c=0.∴﹣4b+4c=﹣4a.
∵a>0,∴a﹣2b+4c=﹣4b+4c=﹣4a<0.故命題③正確.
④根據(jù)圖示知,當(dāng)x=4時(shí),y>0,∴16a+4b+c>0.
由①知,b=﹣2a,∴8a+c>0.故命題④正確.
∴正確的命題為:①③三個(gè).
故選B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展黃梅戲演唱比賽,組委會(huì)將本次比賽的成績(jī)(單位:分)進(jìn)行整理,并繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖(不完整).
請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:
(1)求出a,b的值并補(bǔ)全頻數(shù)分布直方圖.
(2)將此次比賽成績(jī)分為三組:A.50≤x<60;B.60≤x<80;C.80≤x≤100.若按照這樣的分組方式繪制扇形統(tǒng)計(jì)圖,則其中C組所在扇形的圓心角的度數(shù)是多少?
(3)學(xué)校準(zhǔn)備從不低于90分的參賽選手中任選2人參加市級(jí)黃梅戲演唱比賽,求都取得了95分的小欣和小怡同時(shí)被選上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)的圖象與軸分別交于點(diǎn)、,且過點(diǎn).
(1)求二次函數(shù)表達(dá)式;
(2)若點(diǎn)為拋物線上第一象限內(nèi)的點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)在拋物線上(下方)是否存在點(diǎn),使?若存在,求出點(diǎn)到軸的距離;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,、為平面內(nèi)不重合的兩個(gè)點(diǎn),若到、兩點(diǎn)的距離相等,則稱點(diǎn)是線段的“似中點(diǎn)”.
(1)已知,, 在點(diǎn)、、、中,線段的“似中點(diǎn)”是點(diǎn) .
(2)直線與軸交于點(diǎn),與軸交于點(diǎn).
①若點(diǎn)是線段的“似中點(diǎn)”,且在坐標(biāo)軸.上,求點(diǎn)的坐標(biāo);
②若的半徑為2,圓心為,若上存在線段的“似中點(diǎn)”,請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的內(nèi)接四邊形中為直徑,,是的切線,交的延長(zhǎng)線于點(diǎn).
(1)如圖(1)求證:;
(2)如圖(2)點(diǎn)在弧上,連接分別交、于點(diǎn)、,且,求證:;
(3)如圖(3)在(2)的條件下,連接分別交、于點(diǎn)、,,垂足為,是上一點(diǎn),連接,已知,,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時(shí)出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時(shí)休息一小時(shí),然后按原速度繼續(xù)前進(jìn)到達(dá)B地;乙車從B地直接到達(dá)A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時(shí)間x(小時(shí))的函數(shù)圖象.
(1)直接寫出a,m,n的值;
(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時(shí)間x(小時(shí))的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(3)當(dāng)兩車相距120千米時(shí),乙車行駛了多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊由長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M.則下列結(jié)論:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正確結(jié)論的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。
A. 2 B. 3 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com