【題目】如圖,的內(nèi)接四邊形直徑,的切線,的延長線于點

1)如圖(1)求證:

2)如圖(2)點在弧上,連接分別交、于點,且,求證:;

3)如圖(3)在(2)的條件下,連接分別交、于點、,,垂足為,上一點,連接,已知,,,求的長.

【答案】1)證明見解析;(2)證明見解析;(3DQ=14

【解析】

1)連接OB,根據(jù)切線性質(zhì)∠CBP+OBC=90°,由OB=OC,結(jié)合三角形內(nèi)角和易證∠BOC=2CBP,再由平行線性質(zhì)可得∠BOC=ABO,∠COD=OAB,而∠OBA=OAB,所以∠COD=2CBP
2)由OC // AB可知∠AFE=DGC,將∠ADC+2.AFE=180°轉(zhuǎn)化為∠OCD+2CGD=180°,即可得∠GCD=CDG,由等角對等邊即可得到結(jié)論;
3)連接AE、AQ,過M點作MSABS,根據(jù)2ANB-ADQ=2ADB,可得四邊形ABDQ為矩形,即DQ=AB,根據(jù)角的等量關(guān)系解三角形可知EF=,AE=,設(shè)TM=|x,則DT=ET=4+ xDG=3 + x,用三角函數(shù)可導(dǎo)出CD=CG=4+2x,GH=1+x, CD=3x+3,即4+2x=3x+3, 可得GH=4,BF=8,AF=6,即AB=DQ=14

1)連接OB,

BP是⊙O的切線,

OBPB

∵∠PBO90,

∴∠CBP+OBC=90°,

2CBP+2OBC=180°

OB=OC,

∴∠OBC=OCB

∵∠OBC+OCB+BOC=180°,

2OBC+BOC=180°,

∴∠BOC=2CBP

OCAB,

∴∠BOC=ABO,∠COD=OAB

OB=OA,

∴∠OBA=OAB

∴∠COD=2CBP

2)∵OCAB,

∴∠AFE=OGF,

∵∠CGD=OGF,

∴∠AFE=DGC,

∵∠ADC2AFE180

OD=OC∴∠GCD=ADC,

∴∠GCD2AFE180,

∵∠GCD+CDG+CGD=180°

∴∠GCD=CDG,

CDCG;

3)連接AEAQ,過M點作MSABS

AD為⊙O直徑,

AEDE,

∴∠AED90

OTDE,

TE=TD,∠OTD90,

OT=,

OCAB,

∴∠AFE=OGT,

,

EF=2TG=2,

,

FM= EM=,

AE=

可得,tanEAF=

AFM,可得tanFAM=AF=6,

設(shè)TM=x,則

用三角函數(shù)可導(dǎo)出CD=CG=,

CD=

解得

GH=4,BF=8,AF=6

AB=14

∵∠ANB-ADB=CAD

又∵ 2 ANB-ADQ=2ADB,

∴∠ ADQ=2CAD

(1) 可知∠BAD=2CAD,

∴∠ADQ= BAD

DQAB∴四邊形ABDQ的四角均為90°

∴四邊形ABDQ為矩形,

DQ=AB=14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是矩形ABCD的邊AB的中點,點F是邊CD上一點,連接EDEF,ED平分∠AEF,過點DDGEF于點M,交BC于點G,連接GE,GF,若FGDE,則 的值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟南市地鐵1號線于201911日起正式通車,在修建過程中,技術(shù)人員不斷改進技術(shù),提高工作效率,如在打通一條長600米的隧道時,計劃用若干小時完成,在實際工作過程中,每小時打通隧道長度是原計劃的1.2倍,結(jié)果提前2小時完成任務(wù).

1)求原計劃每小時打通隧道多少米?

2)如果按照這個速度下去,后面的300米需要多少小時打通?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乙兩位同學(xué)進行長跑訓(xùn)練,甲和乙所跑的路程S(單位:米)與所用時間t(單位:秒)之間的函數(shù)圖象分別為線段OA和折線OBCD.則下列說法正確的是( )

A. 兩人從起跑線同時出發(fā),同時到達終點

B. 跑步過程中,兩人相遇一次

C. 起跑后160秒時,甲、乙兩人相距最遠

D. 乙在跑前300米時,速度最慢

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BC=10,AB=,∠ABC=30°,點P在直線AC上,點P到直線AB的距離為1,則CP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點分別為(﹣1,0),(30).對于下列命題:①b2a=0;②abc0;③a2b+4c0;④8a+c0.其中正確的有(

A.3B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點P是直線l上的一個動點,當(dāng)PAC的周長最小時,求點P的坐標;

(3)在直線l上是否存在點M,使MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的處,稱為第1次操作,到折痕的距離記為;還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第2次操作,到折痕的距離記為;按上述方法不斷操作下去,經(jīng)過第2019次操作后,到折痕的距離記為,若,則的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了  名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進行溝通的學(xué)生有多少名?

查看答案和解析>>

同步練習(xí)冊答案