【題目】如圖1,在矩形的邊上存在點(diǎn),使得,我們稱點(diǎn)為矩形的和諧點(diǎn)

(1)求證: ;

(2)如圖2,矩形的頂點(diǎn)的坐標(biāo)為為坐標(biāo)原點(diǎn),點(diǎn)分別在軸和軸上,邊上是否存在和諧點(diǎn),如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由

(3)(2),如果點(diǎn)的坐標(biāo)為,且在上存在和諧點(diǎn)的取值范圍

【答案】(1)見(jiàn)解析 (2)存在..(3)

.

【解析】

1)先說(shuō)明,再結(jié)合即可證明;

2)由題意可知,以為直徑作圓與邊交于點(diǎn),即為點(diǎn)P “和諧點(diǎn).連接,再由(1)得到,則運(yùn)用相似三角形的性質(zhì)計(jì)算即可;

3)如圖:當(dāng)B在第一象限時(shí),以為直徑的圓與邊相切于點(diǎn)時(shí),點(diǎn)的縱坐標(biāo)最大,則確定m的最大值;同理,當(dāng)B在第一象限時(shí),確定m的最小值.

:(1)∵四邊形是矩形,

(2)存在.理由如下:

四邊形是矩形,點(diǎn)的坐標(biāo)為

如圖,為直徑作圓與邊交于點(diǎn),連接,則,

點(diǎn)為矩形和諧點(diǎn)

(1)的方法可知,

解得

點(diǎn)的坐標(biāo)為

綜上所述,符合條件的點(diǎn)有兩個(gè): .

(3)如圖, 當(dāng)B在第一象限時(shí),以為直徑的圓與邊相切于點(diǎn)時(shí),點(diǎn)的縱坐標(biāo)最大,此時(shí);

同理:當(dāng)B在第一象限時(shí),可以得到點(diǎn)的縱坐標(biāo)的最小值,此時(shí);

當(dāng)向下移動(dòng)時(shí)(不與軸重合),圓與邊有兩個(gè)交點(diǎn),則.

所以的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲地捐贈(zèng)了600噸物資支援武漢抗擊新冠肺炎,準(zhǔn)備安排A、B兩種類型的貨車把這批物資從甲地快速送到武漢,若安排A型貨車5輛、B型貨車6輛,一共需補(bǔ)貼油費(fèi)3800元;若安排A型貨車3輛、B型貨車2輛,一共需補(bǔ)貼油費(fèi)1800元.

1)從甲地到武漢,AB兩種類型貨車每輛各需補(bǔ)貼油費(fèi)多少元?

2A型貨車每輛可裝15噸物資,B型貨車每輛可裝12噸物資,若安排的B型貨車的數(shù)量是A型貨車的2倍還多4輛,且A型車最多可安排18輛.運(yùn)送這批物資共有哪些安排,其中補(bǔ)貼的總油費(fèi)最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B5,0),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為M(2,-9),連接BM,點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)的解析式.

(2)過(guò)點(diǎn)Px軸的垂線,垂足為點(diǎn)Q,求四邊形ACPQ面積的最大值.

(3)是否存在點(diǎn)P,使得以P、MC為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)“弘揚(yáng)傳統(tǒng)文化”的號(hào)召,某學(xué)校倡導(dǎo)全校1200名學(xué)生進(jìn)行經(jīng)典詩(shī)詞誦背活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩(shī)詞大賽.為了了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取部分學(xué)生調(diào)查“一周詩(shī)詞誦背數(shù)量”,根據(jù)調(diào)査結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖

大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生的周詩(shī)詞誦背數(shù)量,繪制成如下統(tǒng)計(jì)表:

誦背數(shù)量

3

4

5

6

7

8

人數(shù)

10

10

15

40

25

20

請(qǐng)根據(jù)調(diào)查的信息分析

1)學(xué)校團(tuán)委一共抽取了多少名學(xué)生進(jìn)行調(diào)查

2)大賽前誦背4首人數(shù)所在扇形的圓心角為 ,并補(bǔ)充完條形統(tǒng)計(jì)圖

3)估計(jì)大賽后一個(gè)月該校學(xué)生一周詩(shī)詞誦背6(6)以上的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師為了解同學(xué)們對(duì)金庸武俠小說(shuō)的閱讀情況,隨機(jī)對(duì)初三年級(jí)的部分同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果分成以下五類:A:看過(guò)0~3本,B:看過(guò)4~6本,C:看過(guò)7~9本,D:看過(guò)10~12本,E:看過(guò)13~15.并根據(jù)調(diào)查結(jié)果繪制了如圖1、圖2兩幅不完整的統(tǒng)計(jì)圖.

(1)2中的a = ,D所對(duì)的圓心角度數(shù)為 °;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)本次調(diào)查中E類有21女,王老師想從中抽取2名同學(xué)分別撰寫(xiě)一篇讀書(shū)筆記請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求所抽取的兩名學(xué)生恰好是一男一女的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C的中點(diǎn),連接AC并延長(zhǎng)至點(diǎn)D,使CDAC,點(diǎn)EOB上一點(diǎn),且,CE的延長(zhǎng)線交DB的延長(zhǎng)線于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH

1)求證:BD是⊙O的切線;(2)當(dāng)OB2時(shí),求BH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 鄭州外國(guó)語(yǔ)中學(xué)為了解學(xué)生課下閱讀所用時(shí)間的情況,從各年級(jí)學(xué)生中隨機(jī)抽查了一部分學(xué)生進(jìn)行統(tǒng)計(jì),下面是針對(duì)此次統(tǒng)計(jì)所制作的不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:

組別

時(shí)間段(小時(shí))

頻數(shù)

頻率

1

0≤x0.5

10

0.05

2

0.5≤x1.0

20

0.10

3

1.0≤x1.5

80

b

4

1.5≤x2.0

a

0.35

5

2.0≤x2.5

12

0.06

6

2.5≤x3.0

8

0.04

1)表中a=______b=______;

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

3)樣本中,學(xué)生日閱讀所用時(shí)間的中位數(shù)落在第______組;

4)該校共有學(xué)生3000人,請(qǐng)估計(jì)學(xué)生日閱讀量不少于1.5小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在矩形中,,分別是邊,上的點(diǎn),過(guò)點(diǎn)的垂線交于點(diǎn),以為直徑作半圓

1)填空:點(diǎn)_____________(填不在上;當(dāng)時(shí),的值是_____________;

2)如圖1,在中,當(dāng)時(shí),求證:;

3)如圖2,當(dāng)的頂點(diǎn)是邊的中點(diǎn)時(shí),請(qǐng)直接寫(xiě)出三條線段的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案