【題目】已知:在矩形中,,分別是邊,上的點,過點的垂線交于點,以為直徑作半圓

1)填空:點_____________(填不在上;當時,的值是_____________

2)如圖1,在中,當時,求證:;

3)如圖2,當的頂點是邊的中點時,請直接寫出三條線段的數(shù)量關系.

【答案】1)在,1;(2)證明見解析;(3

【解析】

1)連接OA,,OEF中點,所以,因此點A,根據(jù)分析可得,即可求得結果. 

2)證明,得到AF=DH,AE=DFA,所以AD=AF+DF=AE+DH

3)延長EFDH的延長線于點G,先證明,所以AC=DGEF=FG,因為,所以EH=GH,GH=DH+DG=DH+AE,即EH=AE+DH

解:(1)在,1;

連接OA,

,O為EF的中點,

所以,

所以A

當弧AE=AF時,,

所以

2,

在矩形中,,

,,

,

,

,

;

3)延長EF交HD的延長線于點G,


FAD上的中點

∴AF=DF,

,

,

∴AE=DG,EF=FG,

,

∴EH=GH,

∴GH=DH+DG=DH+AE,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形的邊上存在點,使得,我們稱點為矩形的和諧點

(1)求證: ;

(2)如圖2,矩形的頂點的坐標為為坐標原點,分別在軸和軸上,邊上是否存在和諧點,如果存在,求出點的坐標;如果不存在,請說明理由

(3)(2),如果點的坐標為,且在上存在和諧點的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線軸交于點,與軸交于點,在軸上有一動點,過點軸的垂線交直線于點,交拋物線于點,過點于點

1)求的值和直線的函數(shù)表達式;

2)設的周長為,的周長為,若,求的值;

3)如圖2,在(2)條件下,將線段繞點逆時針旋轉得到,旋轉角為,連接,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩條拋物線的頂點相同.

1)求拋物線的解析式;

2)點是拋物找在第四象限內圖象上的一動點,過點軸,為垂足,求的最大值;

3)設拋物線的頂點為點,點的坐標為,問在的對稱軸上是否存在點,使線段繞點順時針旋轉90°得到線段,且點恰好落在拋物線上?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景

在綜合實踐課上,同學們以圖形的平移與旋轉為主題開展數(shù)學活動,如圖(1),先將一張等邊三角形紙片對折后剪開,得到兩個互相重合的△ABD△EFD,點E與點A重合,點B與點F重合,然后將△EFD繞點D順時針旋轉,使點F落在邊AB上,如圖(2),連接EC.

操作發(fā)現(xiàn)

1)判斷四邊形BFEC的形狀,并說明理由;

實踐探究

2)聰聰提出疑問:若等邊三角形的邊長為8,能否將圖(2)中的△EFD沿BC所在的直線平移a個單位長度(規(guī)定沿射線BC方向為正),得到,連接,使得得到的四邊形為菱形,請你幫聰聰解決這個問題,若能,請求出a的值;若不能,請說明理由。

3)老師提出問題:請參照聰聰?shù)乃悸,若等邊三角形的邊長為8,將圖(2)中的△EFD在平面內進行一次平移,得到,畫出平移后構造出的新圖形,標明字母,說明平移及構圖方法,寫出你發(fā)現(xiàn)的一個結論,不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市實施城鄉(xiāng)生活垃圾分類管理,推進生態(tài)文明建設. 為增強學生的環(huán)保意識.隨機抽取8名學生,對他們的垃圾分類投放情況進行調查,這8名學生分別標記為AB,C,D,E,F,G,H,其中“√”表示投放正確,“×”表示投放錯誤,統(tǒng)計情況如下表.

8名學生中至少有三類垃圾投放正確的概率;

為進一步了解垃圾分類投放情況,現(xiàn)從8名學生里“有害垃圾”投放錯誤的學生中隨機抽取兩人接受采訪,試用標記的字母列舉所有可能抽取的結果,并求出剛好抽到C、G兩位學生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠ACB=90°,BC=2,DAB上的動點,將線段CD繞點C逆時針旋轉90°,得到線段CE,連接BE,則BE的最小值是(

A.-1B.C.D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線y4x4x軸,y軸分別交于點AB,點A在拋物線yax2bx3aa0)上,將點B向右平移3個單位長度,得到點C

1)拋物線的頂點坐標為 (用含a的代數(shù)式表示)

2)若a1,當t1≤xt時,函數(shù)yax2bx3aa0)的最大值為y1,最小值為y2,且y1y22,求t的值;

3)若拋物線與線段BC恰有一個公共點,結合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點B6,0)的直線AB與直線OA相交于點A4,2),動點M在線段OA和射線AC上運動.

1)求直線AB的解析式.

2)求△OAC的面積.

3)是否存在點M,使△OMC的面積是△OAC的面積的?若存在求出此時點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案