【題目】如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點(diǎn)D是AC上一個(gè)動(dòng)點(diǎn),以AB為對(duì)角線的所有平行四邊形ADBE中,線段DE的最小值是( )
A.4
B.2
C.2
D.6
【答案】A
【解析】解:∵在Rt△ABC中,∠B=90°,
∴BC⊥AC.
∵四邊形ADBE是平行四邊形,
∴OD=OE,OA=OB.
∴當(dāng)OD取最小值時(shí),DE線段最短,此時(shí)OD⊥BC.
∴OD∥CB.
又點(diǎn)O是AB的中點(diǎn),
∴OD是△ABC的中位線,
∴OD= CB=2,
∴ED=2OD=4.
所以答案是:A.
【考點(diǎn)精析】本題主要考查了垂線段最短和三角形中位線定理的相關(guān)知識(shí)點(diǎn),需要掌握連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短;現(xiàn)實(shí)生活中開(kāi)溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某重點(diǎn)中學(xué)校團(tuán)委、學(xué)生會(huì)發(fā)出倡議,在初中各年級(jí)捐款購(gòu)買(mǎi)書(shū)籍送給我市貧困地區(qū)的學(xué)校.初一年級(jí)利用捐款買(mǎi)甲、乙兩種自然科學(xué)書(shū)籍若干本,用去5324元;初二年級(jí)買(mǎi)了A、B兩種文學(xué)書(shū)籍若干本,用去4840元,其中A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書(shū)與B種書(shū)的單價(jià)相同,乙種書(shū)與A種書(shū)的單價(jià)相同.若甲、乙兩種書(shū)的單價(jià)之和為121元,則初一和初二兩個(gè)年級(jí)共向貧困地區(qū)的學(xué)校捐獻(xiàn)了________本書(shū).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖
(1)問(wèn)題:如圖①,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.
求證:ADBC=APBP.
(2)探究:如圖②,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ,上述結(jié)論是否依然成立?說(shuō)明理由.
(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:
如圖③,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)以D為圓心,以DC為半徑的圓與AB相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把長(zhǎng)方形紙片ABCD沿EF折疊后,使得點(diǎn)D落在點(diǎn)H的位置上,點(diǎn)C恰好落在邊AD上的點(diǎn)G處,連接EG.
(1)△GEF是等腰三角形嗎?請(qǐng)說(shuō)明理由;
(2)若CD=4,GD=8,求HF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O為△ABC的外接圓,點(diǎn)E是△ABC的內(nèi)心,AE的延長(zhǎng)線交BC于點(diǎn)F,交⊙O于點(diǎn)D
(1)如圖1,求證:BD=ED;
(2)如圖2,AD為⊙O的直徑.若BC=6,sin∠BAC= ,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、B、C是數(shù)軸上三點(diǎn),O為原點(diǎn).點(diǎn)C對(duì)應(yīng)的數(shù)為6,BC=4,AB=12.
(1)求點(diǎn)A、B對(duì)應(yīng)的數(shù);
(2)動(dòng)點(diǎn)P、Q分別同時(shí)從A、C出發(fā),分別以每秒6個(gè)單位和3個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).M為AP的中點(diǎn),N在CQ上,且CN=CQ,設(shè)運(yùn)動(dòng)時(shí)間為t(t>0).
①求點(diǎn)M、N對(duì)應(yīng)的數(shù)(用含t的式子表示); ②t為何值時(shí),OM=2BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫(xiě)出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CD交BC于E,O是AC的中點(diǎn),AB=,AD=2,BC=3,下列結(jié)論:
①∠CAE=30;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正確的是()
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E,F分別為邊AB,CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com