【題目】試解答下列問題:

(1)在圖1我們稱之為“8字形”,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系: ;

(2)仔細觀察,在圖2中“8字形”的個數(shù)是;

(3) 在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CDAB分別相交于M、N.試求∠P的度數(shù);

(4)如果圖2中∠D和∠B為任意角時,其他條件不變,試寫出∠B與∠P、∠D之間數(shù)量關(guān)系

【答案】(1∠A+∠D=∠C+∠B;(26;(338°;(42∠P=∠D+∠B;

【解析】試題分析:(1)根據(jù)三角形內(nèi)角和定理即可得出∠A+∠D=∠C+∠B;

2)根據(jù)“8字形的定義,仔細觀察圖形即可得出“8字形共有6個;

3)先根據(jù)“8字形中的角的規(guī)律,可得∠DAP+∠D=∠P+∠DCP①∠PCB+∠B=∠PAB+∠P②,再根據(jù)角平分線的定義,得出∠DAP=∠PAB,∠DCP=∠PCB,將①+②,可得2∠P=∠D+∠B,進而求出∠P的度數(shù);

4)同(3),根據(jù)“8字形中的角的規(guī)律及角平分線的定義,即可得出2∠P=∠D+∠B

解:(1∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°∠AOD=∠BOC,

∴∠A+∠D=∠C+∠B;

故答案為:∠A+∠D=∠C+∠B

2線段ABCD相交于點O,形成“8字形;

線段AN、CM相交于點O,形成“8字形

線段AB、CP相交于點N,形成“8字形

線段AB、CM相交于點O,形成“8字形;

線段APCD相交于點M,形成“8字形

線段AN、CD相交于點O,形成“8字形;

“8字形共有6個;

故答案為:6

3∠DAP+∠D=∠P+∠DCP,

∠PCB+∠B=∠PAB+∠P

∵∠DAB∠BCD的平分線APCP相交于點P,

∴∠DAP=∠PAB,∠DCP=∠PCB,

①+②得:

∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P

2∠P=∠D+∠B,

∵∠D=40度,∠B=36度,

∴2∠P=40°+36°,

∴∠P=38°;

4)關(guān)系:2∠P=∠D+∠B

∠D+∠1+∠2=∠B+∠3+∠4①

∠ONC=∠B+∠4=∠P+∠2

①+②得:

∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1,

∠D+2∠B=2∠P+∠B,

2∠P=∠D+∠B

故答案為:2∠P=∠D+∠B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與ABC相似,則點E的坐標(biāo)不可能是( )

A.(6,0) B.(6,3) C.(6,5) D.(4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列多項式中是完全平方式的是( )

A. 2x2+4x-4 B. 16x2-8y2+1 C. 9a2-12a+4 D. x2y2+2xy+y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中E是BC上的一點,EC=2BE,點D是AC的中點,設(shè)ABC,ADFBEF的面積分別為SABC,SADF,SBEF,且SABC=12,則SADF﹣SBEF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x(x1)=x1的解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運用平方差公式計算,錯誤的是( 。

A. a+b)(ab)=a2b2 B. (2x+1)(2x﹣1)=2x2﹣1

C. x+1)(x﹣1)=x2﹣1 D. (﹣3x+2)(﹣3x﹣2)=9x2﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC于DAE平分∠BAC.

(1)若∠C=70°,∠B=40°,求∠DAE的度數(shù)

(2)若∠C∠B=30°,則∠DAE=________.

(3)若∠C∠B=(∠C>∠B),求∠DAE的度數(shù)(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖(1)是一個蒙古包的照片,這個蒙古包可以近似看成是圓錐和圓柱組成的幾何體,如圖(2)所示.

(1)請畫出這個幾何體的俯視圖;

(2)圖(3)是這個幾何體的正面示意圖,已知蒙古包的頂部離地面的高度EO1=6米,圓柱部分的高OO1=4米,底面圓的直徑BC=8米,求EAO的度數(shù)(結(jié)果精確到0.1°).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在一周內(nèi)賣出某種品牌襯衫的尺寸數(shù)據(jù)如下:

38,42,38,41,36,41,39,40,41,40,43

那么這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別為(

A.40,40 B.41,40 C.40,41 D.41,41

查看答案和解析>>

同步練習(xí)冊答案