精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD中,EBC的中點,FCD上一點,CD4CF,下列結論:

1)∠BAE30°;

2AEEF;

3AE2EF,其中正確的個數為( 。

A.0B.1C.2D.3

【答案】C

【解析】

根據正方形性質、相似三角形應用以及三角函數逐一求證即可

解:如圖所示:

1))∠BAE30°是錯誤的,其原因如下:

∵四邊形ABCD是正方形,

ABBCCD,∠B=∠C90°

又∵EBC的中點,

BECEBCAB,

又∵在RtABE中,tanBAE,

tan30°=,

∴∠BAE30°,

∴(1)不正確;

2AEEF是正確的,其原因如下:

CD4CF,

CD2CE

,∠B=∠C90°,

∴△ABE∽△ECF

∴∠BAE=∠CEF,

又∵∠BAE+∠AEB90°,

∴∠AEB+∠CEF90°,

又∵∠BEA+∠AEF+∠CEF180°,

∴∠AEF90°,

AEEF,

∴(2)正確.

3AE2EF正確,其原因如下:

∵由(2)可知△ABE∽△ECF,

AE2EF

所以③正確;

綜合所述,(2)(3)正確.

故選:C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】《九章算術》是我國古代第一部自成體系的數學專著,代表了東方數學的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應用.書中記載:今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?譯為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1=10寸),問這塊圓形木材的直徑是多少?

如圖所示,請根據所學知識計算:圓形木材的直徑AC是( 。

A. 13 B. 20 C. 26 D. 28

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的直徑,弦于點,點上,恰好經過圓心,連接.

1)若,,求的直徑;

2)若,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,點Q從點B開始沿BC邊向點C2cm/s的速度移動.

(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,PBQ的面積等于6cm2

(2)在(1)中,PQB的面積能否等于8cm2?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀資料:我們把頂點在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如下左圖∠ABC所示。

同學們研究發(fā)現:P為圓上任意一點,當弦AC經過圓心O時,且AB切⊙O于點A,此時弦切角∠CAB=∠P(圖甲)

證明:∵AB切⊙O于點A, ∴∠CAB=90°, 又∵AC是直徑, ∴∠P=90° ∴∠CAB=∠P

問題拓展:若AC不經過圓心O(如圖乙),該結論:弦切角∠CAB=∠P還成立嗎?

請說明理由。

知識運用:如圖,AD是△ABC中∠BAC的平分線,經過點A的⊙O與BC切于點D,與AB、AC分別相交于E、F。 求證:EF∥BC。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,AD于點E

(1)試判斷△BDE的形狀,并說明理由;

(2)若,,求△BDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形網格中,△ABC和△DEF相似,則關于位似中心與相似比敘述正確的是(  )

A. 位似中心是點B,相似比是2:1 B. 位似中心是點D,相似比是2:1

C. 位似中心在點G,H之間,相似比為2:1 D. 位似中心在點G,H之間,相似比為1:2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC邊上的中線,AEBC,垂足為點E,交BDF,cosABC=,AB=13.

(1)求AE的長;

(2)求tanDBC的值.

查看答案和解析>>

同步練習冊答案