【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在處,AD于點(diǎn)E

(1)試判斷△BDE的形狀,并說明理由;

(2)若,求△BDE的面積.

【答案】(1)等腰三角形,理由參見解析;(210

【解析】試題分析:(1)由矩形性質(zhì)中AD平行BC,得出內(nèi)錯(cuò)角相等,即∠EDB=∠DBC,再由折疊角相等得出∠DBC=∠EBD,等量代換得到∠EDB=∠EBD,根據(jù)等角對(duì)等邊即可得出結(jié)論;(2)因?yàn)樯项}已經(jīng)證出ED=EB,可設(shè)DE=BE=x,則AE=8-x),在Rt△ABE中,由勾股定理求出BE長(zhǎng),于是DE長(zhǎng)就知道了,△BDE的面積就等于DE乘以AB除以2得到.

試題解析:(1)因?yàn)槭情L(zhǎng)方形ABCD,所以AD平行BC,所以∠EDB=∠DBC(兩直線平行,內(nèi)錯(cuò)角相等),又因?yàn)檎郫B角相等,所以∠DBC=∠EBD,所以∠EDB=∠EBD(等量代換),所以BE=DE(等角對(duì)等邊),所以△BDE的形狀是等腰三角形;(2)因?yàn)樯项}已經(jīng)證出ED=EB,可設(shè) EB=ED=x,因?yàn)?/span>,則AE=8-x),在Rt△ABE中,AE2+AB2=BE2,8-x242=x2,解得x=5,∴DE=5,所以SBED=DE×AB÷2=5×4÷2=20÷2=10(平方單位).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=﹣x2+2x﹣3,則y的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P為直線m外一點(diǎn),點(diǎn)A,B,C為直線m上三點(diǎn),PA=4cm,PB=5cm,PC=2cm,則點(diǎn)P直線m的距離為( )

A. 4cm B. 2cm C. 小于2cm D. 不大于2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:①因?yàn)椤?/span>1與∠2是對(duì)頂角,所以∠1=2;②因?yàn)椤?/span>1與∠2是鄰補(bǔ)角,所以∠1=2;③因?yàn)椤?/span>1與∠2不是對(duì)頂角,所以∠1≠2;④因?yàn)椤?/span>1與∠2不是鄰補(bǔ)角,所以∠1+2≠180°.

其中正確的有__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若22x+3﹣22x+1=384,則x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算4a6÷(-a2)的結(jié)果是(  )

A. 4a4B. -4a4C. -4a3D. 4a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(10,0),(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)ΔODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)B在第一象限,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),連接AP,并把△AOP繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使邊AO與AB重合,得到△ABD.

(1)求B的坐標(biāo);

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(t,0)時(shí),試用含t的式子表示點(diǎn)D的坐標(biāo);

(3)是否存在點(diǎn)P,使△OPD的面積等于,若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=2(x+1)2﹣2y軸的交點(diǎn)的坐標(biāo)是( 。

A. (0,﹣2) B. (﹣2,0) C. (0,﹣1) D. (0,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案