【題目】如果向東走50米記作+50米,那么﹣50米表示(
A.向西走50米
B.向南走50米
C.向北走50米
D.向東走50米

【答案】A
【解析】解:∵向東走50米記作+50米,

∴﹣50米表示向西走50米.

故選A.

【考點(diǎn)精析】掌握正數(shù)與負(fù)數(shù)是解答本題的根本,需要知道大于0的數(shù)叫正數(shù);小于0的數(shù)叫負(fù)數(shù);0既不是正數(shù)也不是負(fù)數(shù);正數(shù)負(fù)數(shù)表示具有相反意義的量.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙O交x軸于A、B兩點(diǎn),直線FA⊥x 軸于點(diǎn)A,點(diǎn)D在FA上,且DO平行⊙O的弦MB,連DM并延長(zhǎng)交x軸于點(diǎn)C.

(1)判斷直線DC與⊙O的位置關(guān)系,并給出證明;

(2)設(shè)點(diǎn)D的坐標(biāo)為(﹣2,4),試求MC的長(zhǎng)及直線DC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,DBC的中點(diǎn),以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G

1)若∠BAC=40°,求∠AEB的度數(shù);

2)求證:∠AEB=∠ACF

3)求證:EF2+BF2=2AC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=30°,在距離O點(diǎn)80米的A處有一所學(xué)校,當(dāng)重型運(yùn)輸卡車P沿道路ON方向行駛時(shí),距離卡車50米范圍內(nèi)都會(huì)受到卡車噪聲的影響.

(1)學(xué)校A是否受到卡車噪聲的影響?為什么?

(2)假如學(xué)校A會(huì)受到噪聲的影響,若卡車以每小時(shí)18km的速度行駛,求卡車P沿道路ON方向行駛一次給學(xué)校A帶來(lái)噪聲影響的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年全球葵花籽產(chǎn)量約為4200萬(wàn)噸,比2014年上漲2.1%,某企業(yè)加工并銷售葵花籽,假設(shè)銷售量與加工量相等,在圖中,線段AB、折線CDB分別表示葵花籽每千克的加工成本y1(元)、銷售價(jià)y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系;

(1)請(qǐng)你解釋圖中點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;

(2)求線段AB所表示的y1x之間的函數(shù)解析式;

(3)當(dāng)0x90時(shí),求該葵花籽的產(chǎn)量為多少時(shí),該企業(yè)獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三年級(jí)春游,現(xiàn)有36座和42座兩種客車供選擇租用,若只租用36座客車若干輛,則正好坐滿;若只租用42座客車,則能少租一輛,且有一輛車沒(méi)有坐滿,但超過(guò)30人;已知36座客車每輛租金400元,42座客車每輛租金440元.

(1)該校初三年級(jí)共有多少人參加春游?

(2)請(qǐng)你幫該校設(shè)計(jì)一種最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分線.求證:AB+BD=AE+BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+ax+a-2=0

1若該方程有一個(gè)實(shí)數(shù)根為1,求a的值及方程的另一實(shí)根.

2求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,拋物線y=﹣x2+ax+b與x軸從左至右交于A、B兩點(diǎn),與y軸正半軸交于點(diǎn)C.設(shè)∠OCB=α,∠OCA=β,且tanα﹣tanβ=2,OC2=OAOB.

(1)△ABC是否為直角三角形?若是,請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由;

(2)求拋物線的解析式;

(3)若拋物線的頂點(diǎn)為P,求四邊形ABPC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案