【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒小孔時(shí),大孔的水面寬度為________

【答案】10

【解析】

根據(jù)題意,建立如圖所示的平面直角坐標(biāo)系,可以得到A、B、M的坐標(biāo),設(shè)出函數(shù)關(guān)系式,待定系數(shù)求解函數(shù)式.根據(jù)NC的長度,得出函數(shù)的y坐標(biāo),代入解析式,即可得出E、F的坐標(biāo),進(jìn)而得出答案.

如圖,建立如圖所示的平面直角坐標(biāo)系,由題意得,M點(diǎn)坐標(biāo)為(0,6),A點(diǎn)坐標(biāo)為(10,0),B點(diǎn)坐標(biāo)為(10,0),

設(shè)中間大拋物線的函數(shù)式為y=ax2+bx+c,

代入三點(diǎn)的坐標(biāo)得到

解得.

∴函數(shù)式為y=x2+6.

NC=4.5米,

∴令y=4.5米,

代入解析式得x1=5,x2=5,

∴可得EF=5(5)=10米。

故答案為:10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在圖(1)與圖(2)中,每個(gè)小方格都是邊長為1個(gè)單位的正方形,△AOB的三個(gè)頂點(diǎn)都在格點(diǎn)上.

1)將△OAB關(guān)于點(diǎn)P對(duì)稱,在圖(1)中畫出對(duì)稱后的圖形△O′A′B′,并涂黑;

2)先畫出△OAB關(guān)于y軸的軸對(duì)稱圖形△O′A′B′,然后將△O′A′B′向右平移2個(gè)單位,再向上平移3個(gè)單位,在圖(2)中畫出平移后的圖形△O″A″B″,并涂黑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AE平分∠BACBC于點(diǎn)E,OAB上一點(diǎn),經(jīng)過A,E兩點(diǎn)的⊙OAB于點(diǎn)D,連接DE,作∠DEA的平分線EF交⊙O于點(diǎn)F,連接AF.

(1)求證:BC是⊙O的切線;

(2)sinEFA=,AF=,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中,∠C90°,以 BC 為直徑的O AB 于點(diǎn) D,過點(diǎn) D 作∠ADE=∠A,交 AC 于點(diǎn) E

1)求證:DE O 的切線;

2)若 ,BC=15cm,求 DE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn),分別在正方形的邊上,且,點(diǎn)在射線上(點(diǎn)不與點(diǎn)重合).將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,過點(diǎn)的垂線,垂足為點(diǎn),交射線于點(diǎn)

1)如圖1,若點(diǎn)的中點(diǎn),點(diǎn)在線段上,線段,的數(shù)量關(guān)系為  

2)如圖2,若點(diǎn)不是的中點(diǎn),點(diǎn)在線段上,判斷(1)中的結(jié)論是否仍然成立.若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.

3)正方形的邊長為6,,請(qǐng)直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,圖象過點(diǎn)A(5,0),對(duì)稱軸為直線x=﹣2,給出四個(gè)結(jié)論:①abc0;②4a+b0;③若點(diǎn)B(3,y1)、C(4,y2)為函數(shù)圖象上的兩點(diǎn),則y2y1;④a+b+c0.其中,正確結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:;②;③;④;⑤的解為,其中正確的有(

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)CAB的延長線上,CDO相切于點(diǎn)D,CEAD,交AD的延長線于點(diǎn)E

1)求證:BDC=A;

2)若CE=4DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品的標(biāo)價(jià)為500/件,經(jīng)過兩次降價(jià)后的價(jià)格為405/件,并且兩次降價(jià)的百分率相同.

1)求該種商品每次降價(jià)的百分率;

2)若該種商品進(jìn)價(jià)為400/件,兩次降價(jià)共售出此種商品100件,為使兩次降價(jià)銷售的總利潤不少于3200元.問第一次降價(jià)后至少要售出該種商品多少件?

查看答案和解析>>

同步練習(xí)冊(cè)答案