【題目】在菱形ABCD中,∠BAD=α,E為對角線AC上的一點(diǎn)(不與A,C重合),將射線EB繞點(diǎn)E順時針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點(diǎn).試探究線段EB與EF的數(shù)量關(guān)系.小宇發(fā)現(xiàn)點(diǎn)E的位置,α和β的大小都不確定,于是他從特殊情況開始進(jìn)行探究.

(1)如圖1,當(dāng)α=β=90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質(zhì)可知EM=EN,進(jìn)而可得△EMF≌△ENB,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關(guān)系為
(2)如圖2,當(dāng)α=60°,β=120°時,
①依題意補(bǔ)全圖形;
②請幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請給出證明;若不成立,
請舉出反例說明;
(3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對一般的圖形進(jìn)行了探究,設(shè)∠ABE=γ,若旋轉(zhuǎn)后所得的線段EF與EB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請直接寫出角α,β,γ滿足的關(guān)系:

【答案】
(1)EB=EF
(2)

解:①補(bǔ)全圖形如圖2所示,

②結(jié)論依然成立EB=EF;

證法1:如圖3,

過點(diǎn)E作EM⊥AF于M,EN⊥AB于N.

∵四邊形ABCD為菱形,

∴∠CAD=∠CAB.

∵EM⊥AF,EN⊥AB.

∴∠FME=∠N=90°,EM=EN,

∵∠BAD=60°,∠BEF=120°,

∴∠F+∠ABE=360°﹣∠BAD﹣∠BEF=180°.

∵∠ABE+∠EBN=180°,

∴∠F=∠EBN;

在△EFM與△EBN中,

∴△EFM≌△EBN.

∴EF=EB;

證法2:如圖4,連接ED

∵四邊形ABCD是菱形,

∴AD=AB,∠DAC=∠BAE.

又∵AE=AE,

∴△ADE≌△ABE.

∴ED=EB,∠ADE=∠ABE,

又∵∠DAB=60°,∠BEF=120°.

∴∠F+∠ABE=180°.

又∵∠ADE+∠FDE=180°,

∴∠F=∠FDE.

∴EF=ED.

∴EF=EB.


(3)α+β=180°或 °
【解析】解:(1)EB=EF,所以答案是:EB=EF;(3)

如圖3,由(2)的證法1知,△FEM≌△BEN,
∴∠FEM=∠BEN,
∴∠BEF=∠MEN,
在四邊形AMEN中,∠BAC+∠MEN=180°,
∴∠BAC+∠BEF=180°,
∴α+β=180°
如圖4,

由(2)的證法2知,△ADE≌△ABE,
∴∠ADE=∠ABE=γ,∠DAE=∠BAE= ,∠AEB=∠AED=
根據(jù)三角形的內(nèi)角和得,∠ADE+∠DAE+∠AED=180°,
°.
所以答案是:α+β=180°或 °.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張直角三角形紙片,記作△ABC,其中∠B=90°.按如圖方式剪去它的一個角(虛線部分),在剩下的四邊形ADEC中,若∠1=165°,則∠2的度數(shù)為°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)F.
求證:BF=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,D是BC邊上的點(diǎn)(不與點(diǎn)B、C重合),連結(jié)AD.
(1)如圖1,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時,SABD:SACD=
(2)如圖2,當(dāng)AD是∠BAC的平分線時,若AB=m,AC=n,求SABD:SACD的值(用含m,n的代數(shù)式表示)
(3)如圖3,AD平分∠BAC,延長AD到E,使得AD=DE,連接BE,如果AC=2,AB=4,SBDE=6,那么SABC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某公園一塊草坪上的自動旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測量出了相關(guān)數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點(diǎn)的距離為18米,求這種裝置能夠噴灌的草坪面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“今天你光盤了嗎?”這是國家倡導(dǎo)“厲行節(jié)約,反對浪費(fèi)”以來的時尚流行語.某校團(tuán)委隨機(jī)抽取了部分學(xué)生,對他們進(jìn)行了關(guān)于“光盤行動”所持態(tài)度的調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)上述信息,解答下列問題:
(1)抽取的學(xué)生人數(shù)為;
(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請你估計(jì)該校1200名學(xué)生中對“光盤行動”持贊成態(tài)度的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,菱形OABC的面積為12,點(diǎn)B在y軸上,點(diǎn)C在反比例函數(shù)y= 的圖象上,則k的值為(
A.3
B.﹣3
C.6
D.﹣6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一動點(diǎn)從半徑為2的⊙O上的A0點(diǎn)出發(fā),沿著射線A0O方向運(yùn)動到⊙O上的點(diǎn)A1處,再向左沿著與射線A1O夾角為60°的方向運(yùn)動到⊙O上的點(diǎn)A2處;接著又從A2點(diǎn)出發(fā),沿著射線A2O方向運(yùn)動到⊙O上的點(diǎn)A3處,再向左沿著與射線A3O夾角為60°的方向運(yùn)動到⊙O上的點(diǎn)A4處;…按此規(guī)律運(yùn)動到點(diǎn)A2017處,則點(diǎn)A2017與點(diǎn)A0間的距離是( )

A.4
B.2
C.2
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是⊙O的弦,點(diǎn)C是 的中點(diǎn),連接OB、OC,OC交AB于點(diǎn)D.
(1)如圖1,求證:AD=BD;
(2)如圖2,過點(diǎn)B作⊙O的切線交OC的延長線于點(diǎn)M,點(diǎn)P是 上一點(diǎn),連接AP、BP,求證:∠APB﹣∠OMB=90°;
(3)如圖3,在(2)的條件下,連接DP、MP,延長MP交⊙O于點(diǎn)Q,若MQ=6DP,sin∠ABO= ,求 的值.

查看答案和解析>>

同步練習(xí)冊答案