【題目】已知:如圖,BE、BF分別是∠ABC與它的鄰補(bǔ)角∠ABD的平分線,AE⊥BE,垂足為點(diǎn)E,AF⊥BF,垂足為點(diǎn)F,EF分別交邊AB、AC于點(diǎn)M和N.求證:
(1)四邊形AFBE是矩形;
(2)MN=BC.
【答案】證明:(1)∵BE、BF分別是△ABC中∠B及它的外角的平分線,
∴∠1=∠2,∠3=∠4,
∵∠1+∠2+∠3+∠4=180°,
∴∠2+∠3=90°,
∵AE⊥BE,E為垂足,AF⊥BF,F(xiàn)為垂足,
∴∠AFB=∠AEB=90°,
∴四邊形AEBF為矩形;
(2)∵四邊形AEBF為矩形,
∴BM=MA=ME,
∴∠2=∠5,
∵∠2=∠1,
∴∠1=∠5,
∴ME∥BC,
∵M(jìn)是AB的中點(diǎn),
∴N為AC的中點(diǎn),
∴MN=BC.
【解析】(1)由BE、BE是角平分線可得∠EBF是90°,進(jìn)而由條件中的兩個(gè)垂直可得兩個(gè)直角,可得四邊形AEBF是矩形;
(2)由矩形的F質(zhì)可得∠2=∠5進(jìn)而利用角平分線的性質(zhì)可得∠1=∠5,可得ME∥BC,進(jìn)而可得N為AC中點(diǎn),根據(jù)三角形中位線性質(zhì)求出即可.
【考點(diǎn)精析】本題主要考查了三角形中位線定理的相關(guān)知識(shí)點(diǎn),需要掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)市民節(jié)約用電,小亮家所在地區(qū)規(guī)定:每戶居民如果一個(gè)月的用電量不超過度,那么這戶居民這個(gè)月只需交元電費(fèi);如果超過度,則這個(gè)月除了仍要交元的電費(fèi)以外,超過的部分還要按每度元交電費(fèi).已知小亮家月份用電度,交電費(fèi)元;月份用電度,交電費(fèi)元.
(1)請(qǐng)直接寫出小亮家月份超過度部分的用電量(用含的代數(shù)式表示);
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平整的地面上,有若干個(gè)完全相同的小正方體堆成的一個(gè)幾何體,如圖所示.
(1)請(qǐng)畫出這個(gè)幾何體的三視圖;
(2)如果在這個(gè)幾何體的表面噴上黃色的漆,則在所有的小正方體中,有 ________個(gè)正方體只有一個(gè)面是黃色,有 __________個(gè)正方體只有兩個(gè)面是黃色,有 ________個(gè)正方體只有三個(gè)面是黃色.
(3)若現(xiàn)在你手頭還有一些相同的小正方體,如果保持圖的幾何體的俯視圖和左視圖不變,最多可以再添加幾個(gè)小正方體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC中,點(diǎn)D,E分別在邊AB, BC上,把△BDE沿直線DE翻折,使點(diǎn)B落在點(diǎn)B′處,DB′,EB′分別交邊AC于點(diǎn)F,G,若∠ADF=80°,則∠EGC的度數(shù)為( )。
A. 70°B. 75°C. 80°D. 85°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC邊上的一點(diǎn),∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點(diǎn)F.
(1)填空:∠ADC= 度;
(2)當(dāng)∠C=20°時(shí),判斷DE與AC的位置關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC交BC于點(diǎn)D,分別過點(diǎn)A,D作AE∥BC,DE∥AB,AE與DE相交于點(diǎn)E,連結(jié)CE.
(1)求證:AE=BD;
(2)求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在中,點(diǎn)、分別是、邊的中點(diǎn), 、是對(duì)角線上的兩點(diǎn),且,則下列結(jié)論不正確的是( )
A. B.
C. ∥ D. 四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請(qǐng)判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=∠AGE,∠D=∠DGC.
(1)試說明AB∥CD;
(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com