某種商品以8元購(gòu)進(jìn),若按每件10元售出,每天可銷售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的辦法來(lái)增加利潤(rùn),已知這種商品每漲價(jià)0.5元,其銷售量就減少10件.
(1)當(dāng)售價(jià)提高多少元時(shí),每天利潤(rùn)為700元?
(2)設(shè)售價(jià)為x元,利潤(rùn)為y元,請(qǐng)你探究售價(jià)為多少元時(shí),利潤(rùn)最大,最大利潤(rùn)是多少?

解:設(shè)應(yīng)將售價(jià)提為x元時(shí),才能使得所賺的利潤(rùn)最大為y元,
根據(jù)題意得:
y=(x-8)(200-×10)=-20x2+560x-3200,
令y=700,即-20x2+560x-3200=700,
解得x=13或15,
故當(dāng)售價(jià)提高13或15元時(shí),每天利潤(rùn)為700元;

(2)化簡(jiǎn)配方y(tǒng)=(x-8)(200-×10),
=-20x2+560x-3200,
=-20(x2-28x)-3200,
=-20(x-14)2+720,
∴x=14時(shí),利潤(rùn)最大y=720.
答:應(yīng)將售價(jià)提為14元時(shí),才能使所賺利潤(rùn)最大,最大利潤(rùn)為720元.
分析:(1)設(shè)應(yīng)將售價(jià)提為x元時(shí),才能使得所賺的利潤(rùn)最大為y元,根據(jù)題意可得:y=(x-8)(200-×10),令y=700,解出x的值;
(2)化簡(jiǎn)配方,即可得y=-20(x-14)2+720,即可求得答案.
點(diǎn)評(píng):本題考查的是二次函數(shù)在實(shí)際生活中的應(yīng)用.此題難度不大,解題的關(guān)鍵是理解題意,找到等量關(guān)系,求得二次函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某種商品以8元購(gòu)進(jìn),若按每件10元售出,每天可銷售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的辦法來(lái)增加利潤(rùn),已知這種商品每漲價(jià)0.5元,其銷售量就減少10件.
(1)當(dāng)售價(jià)提高多少元時(shí),每天利潤(rùn)為700元?
(2)設(shè)售價(jià)為x元,利潤(rùn)為y元,請(qǐng)你探究售價(jià)為多少元時(shí),利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省資陽(yáng)市簡(jiǎn)陽(yáng)市石板九義校九年級(jí)(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

某種商品以8元購(gòu)進(jìn),若按每件10元售出,每天可銷售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的辦法來(lái)增加利潤(rùn),已知這種商品每漲價(jià)0.5元,其銷售量就減少10件.
(1)當(dāng)售價(jià)提高多少元時(shí),每天利潤(rùn)為700元?
(2)設(shè)售價(jià)為x元,利潤(rùn)為y元,請(qǐng)你探究售價(jià)為多少元時(shí),利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某種商品以8元購(gòu)進(jìn),若按每件10元售出,每天可銷售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的辦法來(lái)增加利潤(rùn),已知這種商品每漲價(jià)0.5元,其銷售量就減少10件.
(1)當(dāng)售價(jià)提高多少元時(shí),每天利潤(rùn)為700元?
(2)設(shè)售價(jià)為x元,利潤(rùn)為y元,請(qǐng)你探究售價(jià)為多少元時(shí),利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:四川省月考題 題型:解答題

某種商品以8元購(gòu)進(jìn),若按每件10元售出,每天可銷售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的辦法來(lái)增加利潤(rùn),已知這種商品每漲價(jià)0.5元,其銷售量就減少10件.
(1)當(dāng)售價(jià)提高多少元時(shí),每天利潤(rùn)為700元?
(2)設(shè)售價(jià)為x元,利潤(rùn)為y元,請(qǐng)你探究售價(jià)為多少元時(shí),利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案