【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由;
(2)過點(diǎn)B作⊙O的切線BE交直線CD于點(diǎn)E,若BE=5,CD=8,求⊙O的半徑.
【答案】(1)直線CD和⊙O的位置關(guān)系是相切,理由見解析;(2)⊙O的半徑為.
【解析】
(1)因?yàn)橹睆剿鶎Φ膱A周角是90°,所以∠ADB=90°,所以∠DAB+∠DBA=90°,
又因?yàn)?/span>OD=OA,所以得出∠DAB=∠ADO,之后進(jìn)一步求解即可。
(2)根據(jù)CD是⊙O的切線,BE是⊙O的切線,所以得出DE=BE=5,∠CBE=90°=∠CDO,再利用勾股定理求出BC的長,進(jìn)一步證明△COD∽△CEB,之后利用相似三角形性質(zhì)求解即可。
(1)直線CD和⊙O的位置關(guān)系是相切,理由如下:
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵∠CDA=∠CBD,
∴∠DAB+∠CDA=90°,
∵OD=OA,
∴∠DAB=∠ADO,
∴∠CDA+∠ADO=90°,
即∠CDO=90°,
∴OD⊥CE,
∴直線CD是⊙O的切線;
(2)∵CD是⊙O的切線,BE是⊙O的切線,
∴DE=BE=5,∠CBE=90°=∠CDO,
∴CE=CD+DE=13,
∴BC==,
∵∠C=∠C,∴△COD∽△CEB,
∴=,即,
解得:OC=,
∴OB=BC﹣OC= ,
即⊙O的半徑為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評估,游樂園決定對噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸的負(fù)半軸交于點(diǎn)、與軸交于點(diǎn),且.
(1)求的值;
(2)如果點(diǎn)是拋物線上一點(diǎn),聯(lián)結(jié)交軸正半軸于點(diǎn),,求的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長BC至點(diǎn)D,使DC=CB,延長DA
與⊙O的另一個交點(diǎn)為E,連結(jié)AC,CE。
(1)求證:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點(diǎn),出水口離岸邊18m,音樂變化時,拋物線的頂點(diǎn)在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.
(1)若已知k=1,且噴出的拋物線水線最大高度達(dá)3m,求此時a、b的值;
(2)若k=1,噴出的水恰好達(dá)到岸邊,則此時噴出的拋物線水線最大高度是多少米?
(3)若k=3,a=﹣,則噴出的拋物線水線能否達(dá)到岸邊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在慈善一日捐活動中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成下面的統(tǒng)計(jì)圖.
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)該校共有600名學(xué)生參與捐款,請估計(jì)該校學(xué)生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動,點(diǎn)Q以1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時,點(diǎn)Q也隨之停止運(yùn)動.設(shè)運(yùn)動時間為t(s),當(dāng)△APQ是直角三角形時,t的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB=80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.
(2)現(xiàn)有一艘寬60 m,頂部截面為長方形且高出水面9 m的輪船要經(jīng)過這座拱橋,這艘輪船能順利通過嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com