【題目】在平面直角坐標(biāo)系中,拋物線與軸的負(fù)半軸交于點(diǎn)、與軸交于點(diǎn),且.
(1)求的值;
(2)如果點(diǎn)是拋物線上一點(diǎn),聯(lián)結(jié)交軸正半軸于點(diǎn),,求的坐標(biāo).
【答案】(1)1 (2)(4,12)
【解析】
(1)先根據(jù)y軸上點(diǎn)的坐標(biāo)特征確定B(0,-4),再利用勾股定理計(jì)算出OA=2,則A點(diǎn)坐標(biāo)為(-2,0),然后把A點(diǎn)坐標(biāo)代入y=ax2-4求出a的值即可得到拋物線解析式;
(2)作PH⊥x軸于點(diǎn)H,則AH=x+3,PH∥BC,根據(jù)平行線分線段成比例定理求出點(diǎn)P的橫坐標(biāo),進(jìn)而可求出點(diǎn)P的坐標(biāo).
(1)當(dāng)x=0時(shí),y=ax2-4=-4,則B(0,-4),所以OB=4,
在Rt△OAB中,OA= =2,
∴A點(diǎn)坐標(biāo)為(-2,0),
把A(-2,0)代入y=ax2-4得4a-4=0,
解得a=1;
(2∵a=1,
∴拋物線解析式為y=x2-4.
設(shè)P(x,x2-4).
∵,
∴,
作PH⊥x軸于點(diǎn)H,則AH=x+3,PH∥BC,
∴,
∴,
∴x=4,
∴y= x2-4=12,
∴P(4,12).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳生活,綠色出行”,自行車(chē)正逐漸成為人們喜愛(ài)的交通工具.某運(yùn)動(dòng)商城的自行車(chē)銷(xiāo)售量自2015年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷(xiāo)售自行車(chē)64輛,3月份銷(xiāo)售了100輛.
(1)若該商城前4個(gè)月的自行車(chē)銷(xiāo)量的月平均增長(zhǎng)率相同,問(wèn)該商城4月份賣(mài)出多少輛自行車(chē).
(2)考慮到自行車(chē)需求不斷增加,該商城準(zhǔn)備投入3萬(wàn)元再購(gòu)進(jìn)一批兩種規(guī)格的自行車(chē),已知型車(chē)的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,型車(chē)進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷(xiāo)售經(jīng)驗(yàn),型車(chē)進(jìn)貨量不少于型車(chē)的2倍,但不超過(guò)型車(chē)的2.8倍.假設(shè)所進(jìn)車(chē)輛全部售完,為使利潤(rùn)最大,該商城應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把直尺、三角尺和圓形螺母按如圖所示放置于桌面上,∠CAB=60°,若量出AD=6cm,則圓形螺母的外直徑是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電商平臺(tái)長(zhǎng)期銷(xiāo)售A型商品,2017年以4800元購(gòu)進(jìn)該型號(hào)商品并且全部售完;2019年,這種型號(hào)的商品的進(jìn)價(jià)比2017年下降了9元/件,該平臺(tái)用3000元購(gòu)進(jìn)了與2017年相同數(shù)量的該A型商品也全部售完,這兩年A型商品的售價(jià)均為40元/件.
(1)2017年A型商品的進(jìn)價(jià)是多少元/件?
(2)若該電商平臺(tái)每年銷(xiāo)售這種禮盒所獲利潤(rùn)的年增長(zhǎng)率相同,問(wèn)年增長(zhǎng)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓O的半徑為1,是圓O的內(nèi)接等邊三角形,點(diǎn)D.E在圓上,四邊形EBCD為矩形,這個(gè)矩形的面積是_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在解決數(shù)學(xué)問(wèn)題時(shí),我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問(wèn)題的策略與方法.
(問(wèn)題提出)
求證:如果一個(gè)定圓的內(nèi)接四邊形對(duì)角線互相垂直,那么這個(gè)四邊形的對(duì)邊的平方和是一個(gè)定值.
(從特殊入手)
我們不妨設(shè)定圓O的半徑是R,⊙O的內(nèi)接四邊形ABCD中,AC⊥BD.
請(qǐng)你在圖①中補(bǔ)全特殊殊位置時(shí)的圖形,并借助于所畫(huà)圖形探究問(wèn)題的結(jié)論.
(問(wèn)題解決)
已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, AC⊥BD.
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在等腰梯形中,,E為上一點(diǎn),且AE:DE=1:3,聯(lián)結(jié)和,與交于點(diǎn)F,如果,。
(1)求梯形的周長(zhǎng)
(2)求線段CF的長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)B作⊙O的切線BE交直線CD于點(diǎn)E,若BE=5,CD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“童舒”童裝商場(chǎng)某種童裝進(jìn)價(jià)為每件60元,當(dāng)售價(jià)為每件100元時(shí),每天可賣(mài)出120件:童裝的售價(jià)每上漲1元,則每天少賣(mài)2件.為了讓利于顧客,商場(chǎng)規(guī)定銷(xiāo)售這種重裝時(shí)利潤(rùn)率不能超過(guò)90%,則當(dāng)每件童裝的售價(jià)定為多少元時(shí),商場(chǎng)銷(xiāo)售此種童裝時(shí)每天可獲得最大利潤(rùn)?每天的最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com