【題目】問題發(fā)現(xiàn):
(1)如圖1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC, ∠BCD的度數(shù)是 ;線段BD,AC之間的數(shù)量關(guān)系是 .
類比探究:
(2)在Rt△ABC中,∠BAC=45°,∠ABC=90°,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC,請(qǐng)問(1)中的結(jié)論還成立嗎?;
拓展延伸:
(3)如圖3,在Rt△ABC中,AB=2,AC=4,∠BDC=90°,若點(diǎn)P滿足PB=PC,∠BPC=90°,請(qǐng)直接寫出線段AP的長(zhǎng)度.
【答案】(1)120°,BD=AC;(2)不成立,理由詳見解析;(3)或.
【解析】
(1)過點(diǎn)D作DE⊥BC,通過線段之間的轉(zhuǎn)換得到AC與DE之間的關(guān)系,在直角三角形BDE中通過BD與DE的關(guān)系,得到BD,AC之間的關(guān)系.
(2)類比(1)的解法,找線段之間的關(guān)系.
(3)分情況進(jìn)行討論,畫出符合題意得圖形進(jìn)行求解.
解:(1)如圖3,過點(diǎn)D作DE⊥BC,垂足為E,設(shè)BC=m.
在Rt△ABC中,∠BAC=30°,由BC=AB·tan30°,BC=AC·sin30°,得AC=2m,BC=m,
∵AC=AD,∠CAD=2×30°=60°,∴△ACD為等邊三角形,∴∠ACD=60°,CD=AC=2m,
∴∠BCD=60°×2=120°,在Rt△DEC中,∠DCE=180°-120°=60°,DC=2m,∴CE=CD·cos60°=m,DE=CE·tan60°=m,∴在Rt△BED中,BD==,
∴==,故BD=AC.故答案為:120°;BD=AC.
(2)不成立,理由如下:
設(shè)BC=n,在Rt△ABC中,∠BAC=45°,∠ABC=90°,∴BC=AB=m,AC=BC=n,
∵AC=AD,∠CAD=90°,∴△CAD為等腰直角三角形,∴∠ACD=45°,CD=AC= 2n,
∴∠BCD=2×45°=90°,在Rt△BCD中,BD==,
∴==,,故BD=AC.答案為:90°;BD=AC.故結(jié)論不成立.
(3)AP的長(zhǎng)為或.;解答如下:
∵PB=PC,∴點(diǎn)P在線段BC的垂直平分線上,∵∠BAC=∠BCP=90°,故A、B、C、P四點(diǎn)共圓,以線段BC的中點(diǎn)為圓心構(gòu)造⊙O,如圖4,圖5,分類討論如下:
①當(dāng)點(diǎn)P在直線BC上方時(shí),如圖4,作PM⊥AC,垂足為M,設(shè)PM=x.
∵PB=PC,∠BPC=90°,∴△PBC為等腰直角三角形,∴∠PBC=45°,
∵∠PAC=∠PBC=45°,∴△AMP為等腰直角三角形,∴AM=PM=x,AP=PM=x,
在Rt△ABC中,AB=2,AC=4,∴BC==,∴PC=BC·sin45°=,
在Rt△PMC中,∵∠PMC=90°,PM=x,PC=,CM=4-x,∴,
解得:,(舍),∴AP==;
②當(dāng)點(diǎn)P在直線BC的下方時(shí),如圖5,作PN⊥AB的延長(zhǎng)線,垂足為N,設(shè)PN=y.
同上可得PB=,△PAN為等腰三角形,∴AN=PN=y,∴BN=y-2,
在Rt△PNB中,∵∠PNB=90°,PN=y,BN=y-2,PB=,∴,
解得:,(舍),∴AP==.故AP的長(zhǎng)度為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(滿分7分)五月石榴紅,枝頭鳥兒歌.一只小鳥從石榴樹上的A處沿直線飛到對(duì)面一房屋的頂部C處.從A處看房屋頂部C處的仰角為,看房屋底部D處的俯角為,石榴樹與該房屋之間的水平距離為米,求出小鳥飛行的距離AC和房屋的高度CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳天虹某商場(chǎng)從廠家批發(fā)電視機(jī)進(jìn)行零售,批發(fā)價(jià)格與零售價(jià)格如下表:
電視機(jī)型號(hào) | 甲 | 乙 |
批發(fā)價(jià)(元/臺(tái)) | 1500 | 2500 |
零售價(jià)(元/臺(tái)) | 2025 | 3640 |
若商場(chǎng)購進(jìn)甲、乙兩種型號(hào)的電視機(jī)共50臺(tái),用去9萬元.
(1)求商場(chǎng)購進(jìn)甲、乙型號(hào)的電視機(jī)各多少臺(tái)?
(2)迎“元旦”商場(chǎng)決定進(jìn)行優(yōu)惠促銷:以零售價(jià)的七五折銷售乙種型號(hào)電視機(jī),兩種電視機(jī)銷售完畢,商場(chǎng)共獲利8.5%,求甲種型號(hào)電視機(jī)打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】復(fù)課返校后,為了拉大學(xué)生鍛煉的間距,學(xué)校決定增購適合獨(dú)立訓(xùn)練的兩種體育器材:跳繩和毽子.如果購進(jìn)5根跳繩和6個(gè)毽子共需196元;購進(jìn)2根跳繩和5個(gè)鍵子共需120元.
(1)求一根跳繩和一個(gè)毽子的售價(jià)分別是多少元;
(2)學(xué)校計(jì)劃購買跳繩和鍵子兩種器材共400個(gè),由于受疫情影響,商場(chǎng)決定對(duì)這兩種器材打折銷售,其中跳繩以八折出售,毽子以七五折出售,學(xué)校要求跳繩的數(shù)量不少于毽子數(shù)量的3倍,跳繩的數(shù)量不多于310根,請(qǐng)你求出學(xué);ㄥX最少的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(diǎn)(不與端點(diǎn)重合),作,分別交、圓周于、,連接,已知.
(1)求證:為⊙的切線;
(2)已知,填空:
①當(dāng)__________時(shí),四邊形是菱形;
②若,當(dāng)__________時(shí),為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2020年初新冠肺炎疫情爆發(fā)以來,國內(nèi)經(jīng)濟(jì)--度被按下暫停鍵,如今隨著國內(nèi)疫情防控形勢(shì)持續(xù)向好,各地開始進(jìn)人積極復(fù)工復(fù)產(chǎn)的新模式.某商家為降低疫情帶來的影響,刺激消費(fèi),吸引顧客,特此設(shè)計(jì)了一個(gè)游戲,其規(guī)則是:分別轉(zhuǎn)動(dòng)如圖所示的兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤各一次,每次指針落在每一字母區(qū)域的機(jī)會(huì)均等(若指針恰好落在分界線上則重轉(zhuǎn)),當(dāng)兩個(gè)轉(zhuǎn)盤的指針?biāo)缸帜赶嗤瑫r(shí),消費(fèi)者就可以獲得一次八折優(yōu)惠價(jià)購買商品的機(jī)會(huì).
(1)用樹狀圖或列表的方法表示出游戲可能出現(xiàn)的所有結(jié)果;
(2)若小亮參加一次游戲,則他能獲得八折優(yōu)惠價(jià)購買商品的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商店購進(jìn)了足球和排球共20個(gè),一共花了1360元,進(jìn)價(jià)和售價(jià)如表:
足球 | 排球 | |
進(jìn)價(jià)(元/個(gè)) | 80 | 50 |
售價(jià)(元/個(gè)) | 95 | 60 |
(l)購進(jìn)足球和排球各多少個(gè)?
(2)全部銷售完后商店共獲利潤多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售A、B兩種型號(hào)的電風(fēng)扇,進(jìn)價(jià)及售價(jià)如表:
品牌 | A | B |
進(jìn)價(jià)(元/臺(tái)) | 120 | 180 |
售價(jià)(元/臺(tái)) | 150 | 240 |
(1)該商場(chǎng)4月份用21000元購進(jìn)A、B兩種型號(hào)的電風(fēng)扇,全部售完后獲利6000元,求商場(chǎng)4月份購進(jìn)A、B兩種型號(hào)電風(fēng)扇的數(shù)量;
(2)該商場(chǎng)5月份計(jì)劃用不超過42000元購進(jìn)A、B兩種型號(hào)電風(fēng)扇共300臺(tái),且B種型號(hào)的電風(fēng)扇不少于50臺(tái);銷售時(shí)準(zhǔn)備A種型號(hào)的電風(fēng)扇價(jià)格不變,B種型號(hào)的電風(fēng)扇打9折銷售.那么商場(chǎng)如何進(jìn)貨才能使利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=a,∠ABC=60°,過點(diǎn)A作AE⊥BC,垂足為E,AF⊥CD,垂足為F.
(1)連接EF,用等式表示線段EF與EC的數(shù)量關(guān)系,并說明理由;
(2)連接BF,過點(diǎn)A作AK⊥BF,垂足為K,求BK的長(zhǎng)(用含a的代數(shù)式表示);
(3)延長(zhǎng)線段CB到G,延長(zhǎng)線段DC到H,且BG=CH,連接AG、GH、AH.
①判斷△AGH的形狀,并說明理由;
②若a=2,S△ADH=(3+),求sin∠GAB的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com