【題目】某市在精準扶貧活動中,因地制宜指導(dǎo)農(nóng)民調(diào)整種植結(jié)構(gòu),增加種植效益.2018年李大伯家在工作隊的幫助下,計劃種植馬鈴薯和蔬菜共15畝,預(yù)計每畝的投入與產(chǎn)出如下表:(1)如果這15畝地的純收入要達到54900元,需種植馬鈴薯和蔬菜各多少畝?(2)如果總投入不超過16000元,則最多種植蔬菜多少畝?該情況下15畝地的純收入是多少?
投入(元) | 產(chǎn)出(元) | |
馬鈴薯 | 1000 | 4500 |
蔬菜 | 1200 | 5300 |
【答案】(1)需種植馬鈴薯11畝,需種植蔬菜4畝;(2)最多種植蔬菜5畝,該情況下15畝地的純收入是55500元.
【解析】
(1)設(shè)需種植馬鈴薯x畝,需種植蔬菜y畝,根據(jù)等量關(guān)系:一共15畝地;這15畝地的純收入要達到54900元;列出關(guān)于x和y的二元一次方程組,解出即可;
(2)設(shè)種植馬鈴薯a畝,則需種植蔬菜(15﹣a)畝,根據(jù)“總投入不超過16000元”,列出關(guān)于a的一元一次不等式,解出即可.
解:(1)設(shè)需種植馬鈴薯x畝,需種植蔬菜y畝,依題意有
,
解得.
故需種植馬鈴薯11畝,需種植蔬菜4畝;
(2)設(shè)種植馬鈴薯a畝,則需種植蔬菜(15﹣a)畝,依題意有
1000a+1200(15﹣a)≤16000,
解得a≥10,
15﹣10=5(畝),
(4500﹣1000)×10+(5300﹣1200)×5
=35000+20500
=55500(元).
答:最多種植蔬菜5畝,該情況下15畝地的純收入是55500元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,橫、縱坐標都為整數(shù)的點叫做整點,設(shè)坐標軸的單位長為1cm,整點P從原點O出發(fā),速度為1cm/秒,且點P只能向上或向右運動.請回答下列問題:
(1)填表:
從的間 | 可以得到的的坐標 | 可以得到的的個數(shù) |
1秒 | (0,1)、(1,0) | 2 |
2秒 | (2,0)、(0,2)、 | 3 |
3秒 | (3,0)、(0,3)、 、 | 4 |
(2)當(dāng)點P從點O出發(fā)10秒時,可得到的整點的個數(shù)是 個;
(3)當(dāng)點P從O點出發(fā) 到整點(2,2015);
(4)當(dāng)點P從點O出發(fā)30秒時,整點P橫縱坐標恰好滿足方程y=2x-6,請求P點坐標
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】珠海市水務(wù)局對某小區(qū)居民生活用水情況進行了調(diào)査.隨機抽取部分家庭進行統(tǒng)計,繪制成如下尚未完成的頻數(shù)分布表和頻率分布直方圖.請根據(jù)圖表,解答下列問題:
月均用水量(單位:噸 | 頻數(shù) | 頻率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合計 | d | 1.00 |
(1)b= ,c= ,并補全頻數(shù)分布直方圖;
(2)為鼓勵節(jié)約用水用水,現(xiàn)要確定一個用水量標準P(單位:噸),超過這個標準的部分按1.5倍的價格收費,若要使60%的家庭水費支出不受影響,則這個用水量標準P= 噸;
(3)根據(jù)該樣本,請估計該小區(qū)400戶家庭中月均用水量不少于5噸的家庭約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點A(-2,0).點D在y軸上,連接AD并將它沿x軸向右平移至BC的位置,且點B坐標為(4,0),連接CD,OD=AB.
(1)線段CD的長為 ,點C的坐標為 ;
(2)如圖2,若點M從點B出發(fā),以1個單位長度/秒的速度沿著x軸向左運動,同時點N從原點O出發(fā),以相同的速度沿折線OD→DC運動(當(dāng)N到達點C時,兩點均停止運動).假設(shè)運動時間為t秒.
①t為何值時,MN∥y軸;
②求t為何值時,S△BCM=2S△ADN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想CE與AF的數(shù)量關(guān)系,并加以證明;
(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數(shù);
(3)若BC= 4,點M是邊AB的中點,連結(jié)DM,DM與AC交于點O,當(dāng)三角板的一邊DF與邊DM重合時(如圖2),若OF=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,直線l1:與x軸交于點A,與y軸交于點B,直線l2:與x軸交于點C,與直線l1交于點P.
(1)當(dāng)k=1時,求點P的坐標;
(2)如圖1,點D為PA的中點,過點D作DE⊥x軸于E,交直線l2于點F,若DF=2DE,求k的值;
(3)如圖2,點P在第二象限內(nèi),PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ的延長線交直線l1于點R,若PR=PC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,BG的延長線交AC于點E,F為AB上的一點,CF與AD垂直,交AD于點H,則下面判斷正確的有( )
①AD是△ABE的角平分線;②BE是△ABD的邊AD上的中線;
③CH是△ACD的邊AD上的高;④AH是△ACF的角平分線和高
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com