如圖,已知在平面直角坐標(biāo)系中,點(diǎn)A(4,0)、B(-3,0),點(diǎn)C在y軸正半軸上,且tan∠CAO=1,點(diǎn)Q是線(xiàn)段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC交BC于點(diǎn)E.
(1)求點(diǎn)C的坐標(biāo)及直線(xiàn)BC的解析式;
(2)連結(jié)CQ,當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)若點(diǎn)P是線(xiàn)段AC上的點(diǎn),是否存在這樣的點(diǎn)P,使△PQE成為等腰直角三角形?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

【答案】分析:(1)在直角△AOC中,利用三角函數(shù)即可求得OC的長(zhǎng),從而得到C的坐標(biāo),利用待定系數(shù)法即可求得直線(xiàn)BC的解析式;
(2)設(shè)Q的坐標(biāo)是(q,0),根據(jù)相似三角形的性質(zhì),用q表示出△BEQ的面積,以及△ACQ的面積,則△CQE的面積即可表示成q的函數(shù),利用函數(shù)的性質(zhì)即可求得q的值;
(3)設(shè)P點(diǎn)坐標(biāo)為(p,4-p),即可利用p、q表示出△PQE的三邊的長(zhǎng),然后分三種情況討論,即可求得p,q的值,從而求得P的坐標(biāo).
解答:解:(1)∵直角△AOC中tan∠CAO=1,
∴OC=OA=4,
∴C點(diǎn)坐標(biāo)為(0,4),
設(shè)直線(xiàn)BC的解析式是y=mx+n,則 ,
解得:
則BC所在直線(xiàn)為y=x+4;

(2)設(shè)直線(xiàn)AC的解析式是y=kx+b,則,
解得:,
則AC所在直線(xiàn)為y=4-x.
設(shè)Q點(diǎn)坐標(biāo)為(q,0),其中q∈[-3,4],則EQ所在直線(xiàn)為y=q-x,
解方程組,解得:
則E點(diǎn)坐標(biāo)為(),
S△ABC=AB•OC=×7×4=14,
AQ=4-q,BQ=q+3,
∵QE∥AC,
∴△BEQ∽△BCA,
=(2=
∴S△BEQ=×14=,
S△ACQ=AQ•OC=(4-q)×4=2(4-q),
∴S△CEQ=S△ABC-S△BEQ-S△ACQ=14--2(4-q)
=-++,
則當(dāng)q=時(shí),△CEQ的面積最大,則Q的坐標(biāo)是(,0);

(3)設(shè)P點(diǎn)坐標(biāo)為(p,4-p) 其中p∈[0,4],
可得PQ2=(p-q)2+(4-p)2
PE2=(p-q+2+(4-p-2
QE2=(2+(2=
△PQE成為等腰直角三角形
(1)PQ為斜邊,則有  PE2=QE2
PQ2=2QE2的可得到(p-q+2+(4-p-2=
(p-q)2+(4-p)2=,
解得
其中q=與q∈[-3,4]的范圍不符 所以p=,q=,
對(duì)應(yīng)P點(diǎn)坐標(biāo)為()Q點(diǎn)坐標(biāo)為(,0);
(2)PE為斜邊 則有  PQ2=QE2PE2=2QE2即 (p-q)2+(4-p)2= 
(p-q+2+(4-p-2=
可解得,對(duì)應(yīng)P點(diǎn)坐標(biāo)為(,)Q點(diǎn)坐標(biāo)為(,0);

(3)QE為斜邊則有  PQ2=,PE2=  
即 (p-q)2+(4-p)2= 
(p-q+2+(4-p-2=,
解得
對(duì)應(yīng)P點(diǎn)坐標(biāo)為()Q點(diǎn)坐標(biāo)為(,0).
所有符合條件的點(diǎn)P坐標(biāo)為()和(,).
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì),待定系數(shù)法求函數(shù)的解析式以及二次函數(shù)的性質(zhì)的綜合應(yīng)用,正確進(jìn)行討論是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(-3,7),
B(1,5),C(-5,3).
(1)將△ABC向下平移3個(gè)單位長(zhǎng)度,得到△A′B′C′,再向右平移5個(gè)單位長(zhǎng)度,得到△A″B″C″.在圖中分別作出△A′B′C′,△A″B″C″;
(2)分別寫(xiě)出點(diǎn)A″、B″、C″的坐標(biāo);
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系xOy中,直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過(guò)點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),角的兩精英家教網(wǎng)邊分別交y軸的正半軸、x軸的正半軸于點(diǎn)E和F.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)當(dāng)BE經(jīng)過(guò)(1)中拋物線(xiàn)的頂點(diǎn)時(shí),求CF的長(zhǎng);
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上取兩點(diǎn)P、Q(點(diǎn)Q在點(diǎn)P的上方),且PQ=1,要使四邊形BCPQ的周長(zhǎng)最小,求出P、Q兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系中,直角梯形ABCD,AB∥CD,AD=CD,∠ABC=90°,A、B在x軸上,點(diǎn)D在y軸上,若tan∠OAD=
4
3
,B點(diǎn)的坐標(biāo)為(5,0).
(1)求直線(xiàn)AC的解析式;
(2)若點(diǎn)Q、P分別從點(diǎn)C、A同時(shí)出發(fā),點(diǎn)Q沿線(xiàn)段CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)P沿線(xiàn)段AB向點(diǎn)B運(yùn)動(dòng),Q點(diǎn)的速度為每秒
5
個(gè)單位長(zhǎng)度,P點(diǎn)的速度為每秒2個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒,△PQE的面積為S,求S與t的函數(shù)關(guān)系式(請(qǐng)直接寫(xiě)出自變量t的取值范圍);
(3)在(2)的條件下,過(guò)P點(diǎn)作PQ的垂線(xiàn)交直線(xiàn)CD于點(diǎn)M,在P、Q運(yùn)動(dòng)的過(guò)程中,是否在平面內(nèi)有一點(diǎn)N,使四邊形QPMN為正方形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•樊城區(qū)模擬)如圖,已知在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=
m
x
(m≠0)的圖象相交于A、B兩點(diǎn),且點(diǎn)B的縱坐標(biāo)為-
1
2
,過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,AC=1,OC=2.求:
(1)求反比例函數(shù)的解析式和一次函數(shù)的解析式;
(2)求不等式kx+b-
m
x
<0的解集(請(qǐng)直接寫(xiě)出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系中,△ABC的位置如圖所示
(1)把△ABC平移后,三角形某一邊上一點(diǎn)P(x,y)的對(duì)應(yīng)點(diǎn)為P′(x+4,y-2),平移后所得三角形的各頂點(diǎn)的坐標(biāo)分別為:A1
(3,2)
(3,2)
、B1
(0,-3)
(0,-3)
、C1
(5,-1)
(5,-1)
;
(2)在圖上畫(huà)出平移后的三角形△A1B1C1
(3)請(qǐng)計(jì)算△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案