【題目】如圖,將二次函數(shù)(其中)的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,形成新的圖象記為,另有一次函數(shù)的圖象記為,若恰有兩個(gè)交點(diǎn)時(shí),則的范圍是________

【答案】

【解析】

根據(jù)題意得出翻折后的拋物線解析式為,若恰有兩個(gè)交點(diǎn),則需分兩種情況,①當(dāng)直線與分別有一個(gè)交點(diǎn)時(shí),結(jié)合圖象即可解答;②當(dāng)直線與有兩個(gè)交點(diǎn),直線與無交點(diǎn)時(shí),聯(lián)立方程組,利用根的判別式求出m的值,結(jié)合圖象即可解答.

解:二次函數(shù)(其中)的圖象在軸下方的部分沿軸翻折得到的拋物線解析式為:

∵直線,

當(dāng)x=0時(shí),y=2,當(dāng)y=0時(shí),x=-2,

∴直線x軸交點(diǎn)為(-2,0),與y軸的交點(diǎn)為(0,2),

①如下圖,當(dāng)拋物線經(jīng)過點(diǎn)(-2,0)時(shí),0=4-m,解得m=4,

觀察圖象可知,當(dāng)m4時(shí),恰有兩個(gè)交點(diǎn),

②由,當(dāng)時(shí),解得:,

觀察圖象可知,當(dāng)時(shí),恰有兩個(gè)交點(diǎn),

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)D、E分別在BC、AB上,且∠BDE=∠CAD

1)求證:△BDE∽△CAD;

2)求證:△ADE∽△ABD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=13cm,AC=12cm,BC=5cmDBC邊上的一個(gè)動(dòng)點(diǎn),連接AD,過點(diǎn)CCEADE,連接BE,在點(diǎn)D變化的過程中,線段BE的最小值是(  )

A.2.5B.C.D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條頂點(diǎn)坐標(biāo)為的拋物線與y軸交于點(diǎn)C(0,5).與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)),有一寬度為1.長(zhǎng)崖足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線于點(diǎn)P和點(diǎn)Q(點(diǎn)P在點(diǎn)Q右側(cè)),交直線AC于點(diǎn)M和點(diǎn)N(點(diǎn)M在點(diǎn)N右側(cè)),交x軸于點(diǎn)E和點(diǎn)F(點(diǎn)E在點(diǎn)F右側(cè))

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)M和點(diǎn)N都在線段AC上時(shí),連接MF,如果,求點(diǎn)Q的坐標(biāo);

(3)在矩形平移的過程中,當(dāng)以點(diǎn)P、Q、MN為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,點(diǎn)上一點(diǎn),,,連接

1)求證:;

2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長(zhǎng)線段與較短線段長(zhǎng)度的差等于線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x與二次函數(shù)的圖象相交于O、A兩點(diǎn),點(diǎn)A(3,3),點(diǎn)M為拋物線的頂點(diǎn).

(1)求二次函數(shù)的表達(dá)式;

(2)長(zhǎng)度為的線段PQ在線段OA(不包括端點(diǎn))上滑動(dòng),分別過點(diǎn)P、Q作x軸的垂線交拋物線于點(diǎn)P1、Q1,求四邊形PQQ1P1面積的最大值;

(3)直線OA上是否存在點(diǎn)E,使得點(diǎn)E關(guān)于直線MA的對(duì)稱點(diǎn)F滿足S△AOF=S△AOM?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a0)經(jīng)過點(diǎn)A(3,0),B(﹣1,0),C(0,﹣3).

(1)求該拋物線的解析式;

(2)若以點(diǎn)A為圓心的圓與直線BC相切于點(diǎn)M,求切點(diǎn)M的坐標(biāo);

(3)若點(diǎn)Qx軸上,點(diǎn)P在拋物線上,是否存在以點(diǎn)B,C,Q,P為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yk≠0)的圖象經(jīng)過ABD的頂點(diǎn)AB,交BD于點(diǎn)CAB經(jīng)過原點(diǎn),點(diǎn)Dy軸上,若BD4CD,OBD的面積為15,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,ABACAD是△ABC的中線,AN為△ABC的外角∠CAM的平分線,CEAD,交AN于點(diǎn)E.求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案