精英家教網 > 初中數學 > 題目詳情

【題目】已知菱形ABCD在平面直角坐標系的位置如圖所示,A(1,1),B(6,1),AC=4 ,點P是對角線OAC上的一個動點,E(0,2),當△EPD周長最小時,點P的坐標為(
A.(2,2)
B.(2,
C.( ,
D.(

【答案】D
【解析】解:連接ED,如圖,
∵點D關于AC的對稱點是點B,
∴DP=BP,
∴EB即為EP+DP最短,
即此時△EPD周長最小,
連接BD交AC于O,
過O作OF⊥AB于F,
∵四邊形ABCD是菱形,
∴AO= AC=2 ,AC⊥BD,
∴BO= = ,
∴OF= =2,
∴AF= =4,
∵A(1,1),B(6,1),
∴AB∥x軸,
∴直線AB與x軸間的距離是1,
∴O點的縱坐標為2+1=3,
∴O(5,3),
∴直線AC的解析式為:y= x+ ,
∵E(0,2),B(6,1),
∴直線BE的解析式為:y=﹣ x+2,
得: ,
∴P( , ).
故選D.
【考點精析】解答此題的關鍵在于理解菱形的性質的相關知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我市進行運河帶綠化,計劃種植銀杏樹苗,現甲、乙兩家有相同的銀杏樹苗可供選擇,其具體銷售方案如下:

甲:購買樹苗數量不超過500棵時,銷售單價為800棵;超過500棵的部分,銷售單價為700棵.

乙:購買樹苗數量不超過1000棵時,銷售單價為800棵;超過1000棵的部分,銷售單價為600棵.

設購買銀杏樹苗x棵,到兩家購買所需費用分別為元、

(1)該景區(qū)需要購買800棵銀杏樹苗,若都在甲家購買所要費用為______元,若都在乙家購買所需費用為______元;

(2)時,分別求出、x之間的函數關系式;

(3)如果你是該景區(qū)的負責人,購買樹苗時有什么方案,為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,一次函數的圖象經過點A(2,3)與點B(0,5).

(1)求此一次函數的表達式;

(2)若點P為此一次函數圖象上一點,且△POB的面積為10,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠A∶∠B∶∠C=3510,又MNC≌△ABC,則∠BCM∶∠BCN等于(

A. 12 B. 13 C. 23 D. 14

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC△AEG面積之間的關系,并說明理由。

2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y= 的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內有一點C,滿足AC=BC,當點A運動時,點C始終在函數y= 的圖象上運動,tan∠CAB=2,則關于x的方程x2﹣5x+k=0的解為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠DOC為直角,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列結論錯誤的是(

A. ∠DOG與∠BOE互補 B. ∠AOE-∠DOF=45°

C. ∠EOD與∠COG互補 D. ∠AOE與∠DOF互余

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,FAD的中點,延長BC到點E,使CE=BC,連結DE,CF

1)求證:四邊形CEDF是平行四邊形;

2)若AB=4AD=6,∠B=60°,求DE的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中 的長是cm(計算結果保留π).

查看答案和解析>>

同步練習冊答案