精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BFCE,垂足為F,則tanFBC的值為( 。

A. B. C. D.

【答案】D

【解析】試題分析:首先根據以B為圓心BC為半徑畫弧交AD于點E,判斷出AE=BC=5;然后根據勾股定理,求出AE的值是多少,進而求出DE的值是多少;再根據勾股定理,求出CE的值是多少,再根據BC=BE,BF⊥CE,判斷出點FCE的中點,據此求出CF、BF的值各是多少;最后根據角的正切的求法,求出tan∠FBC的值是多少即可.

試題解析:B為圓心BC為半徑畫弧交AD于點E,

BE=BC=5,

∴AE=

∴DE=AD-AE=5-4=1,

∴CE=

∵BC=BEBF⊥CE,

FCE的中點,

∴CF=CE=,

∴BF=

∴tan∠FBC=

tan∠FBC的值為

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A30°,AB12,點FAB的中點,過點FFDABAC于點D

1)若△AFD以每秒2個單位長度的速度沿射線FB向右移動,得到△A1F1D1,當F1與點B重合時停止移動.設移動時間為t秒,△A1F1D1與△CBF重疊部分的面積記為S.直接寫出St的函數關系式.

2)在(1)的基礎上,如果D1B,F構成的△D1BF為等腰三角形,求出t值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一輪船在處測得燈塔在正北方向,燈塔在南偏東方向,輪船向正東航行了,到達處,測得位于北偏西方向,位于南偏西方向.

(1)線段是否相等?請說明理由;

(2)求、間的距離(參考數據).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將線段AB繞點A按逆時針方向旋轉90°后,得到線段AB,則點B的坐標為__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知平面直角坐標系中兩定點,拋物線過點AB,與y交于C點,點Pm,n)為拋物線上一點.

1)求拋物線的解析式和點C的坐標;

2)當∠APB為鈍角時,求m的取值范圍;

3)當∠PAB=∠ABC時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在△ABC中,D是邊BC上一點,以點D為圓心,CD為半徑作半圓,分別與邊AC、BC相交于點E和點F.如果AB=AC=5,cosB=AE=1.求:

(1)線段CD的長度;

(2)點A和點F之間的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某風景區(qū)集體門票的收費標準是:20人以內20),每人25;超過20超過的部分,每人10

(1)寫出應收門票費y與游覽人數x之間的函數解析式;

(2)利用(1)中的函數解析式計算,某班54名學生要去該風景區(qū)游覽購買門票一共需要花多少錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知是等邊三角形,點是直線上一點,以為一邊在的右側作等邊

1)如圖①,點在線段上移動時,直接寫出的大小關系;

2)如圖②,點在線段的延長線上移動時,猜想的大小是否發(fā)生變化.若不變請求出其大;若變化,請說明理由.

查看答案和解析>>

同步練習冊答案