【題目】為降低空氣污染,公交公司決定全部更換節(jié)能環(huán)保的燃?xì)夤卉?chē).計(jì)劃購(gòu)買(mǎi)A型和B型兩種公交車(chē)共10輛,其中每臺(tái)的價(jià)格,年均載客量如表:

A

B

價(jià)格(萬(wàn)元/輛)

a

b

年均載客量(萬(wàn)人//輛)

60

100

若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)1輛,共需350萬(wàn)元

(1)求購(gòu)買(mǎi)每輛A型公交車(chē)和每輛B型公交車(chē)分別多少萬(wàn)元?

(2)如果該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)年均載客總和不少于680萬(wàn)人次,有哪幾種購(gòu)車(chē)方案?請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購(gòu)車(chē)總費(fèi)用最少.

【答案】(1)購(gòu)買(mǎi)每輛A型公交車(chē)100萬(wàn)元,購(gòu)買(mǎi)每輛B型公交車(chē)150萬(wàn)元;(2)購(gòu)買(mǎi)A型公交車(chē)8輛時(shí),購(gòu)車(chē)的總費(fèi)用最小,為1100萬(wàn)元.

【解析】

(1)根據(jù)購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)1輛,共需350萬(wàn)元列方程組求解可得;
(2)設(shè)購(gòu)買(mǎi)A型公交車(chē)x輛,則購(gòu)買(mǎi)B型公交車(chē)(10-x)輛,根據(jù)總費(fèi)用不超過(guò)1200萬(wàn)元、年均載客總和不少于680萬(wàn)人次求得x的范圍,設(shè)購(gòu)車(chē)的總費(fèi)用為W,列出W關(guān)于x的函數(shù)解析式,利用一次函數(shù)的性質(zhì)求解可得.

(1)根據(jù)題意,得:

解得:

答:購(gòu)買(mǎi)每輛A型公交車(chē)100萬(wàn)元,購(gòu)買(mǎi)每輛B型公交車(chē)150萬(wàn)元;

(2)設(shè)購(gòu)買(mǎi)A型公交車(chē)x,則購(gòu)買(mǎi)B型公交車(chē)(10x)輛,

根據(jù)題意得:

解得:

設(shè)購(gòu)車(chē)的總費(fèi)用為W

W=100x+150(10x)=50x+1500,

Wx的增大而減小,

∴當(dāng)x=8時(shí),W取得最小值,最小值為1100萬(wàn)元

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊ABCAB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cms

⑴連接AQ、CP交于點(diǎn)M,在點(diǎn)PQ運(yùn)動(dòng)的過(guò)程中,∠CMQ的大小變化嗎?若變化,則說(shuō)明理由,若不變,請(qǐng)直接寫(xiě)出它的度數(shù);

⑵點(diǎn)PQ在運(yùn)動(dòng)過(guò)程中,設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PBQ為直角三角形?

⑶如圖2,若點(diǎn)PQ在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠CMQ的大小變化嗎?則說(shuō)明理由;若不變,請(qǐng)求出它的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形一腰上的高與底邊的夾角為20°,則此三角形的頂角度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作發(fā)現(xiàn):如圖,已知ABCADE均為等腰三角形,ABACADAE,將這兩個(gè)三角形放置在一起,使點(diǎn)B,DE在同一直線上,連接CE

1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED55°,求證:BAD≌△CAE;

2)在(1)的條件下,求∠BEC的度數(shù);

拓廣探索:(3)如圖2,若∠CAB=∠EAD120°,BD4,CFBCEBE邊上的高,請(qǐng)直接寫(xiě)出EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上的兩點(diǎn),平分,

求證:的切線;

過(guò)點(diǎn),如圖,判斷之間的數(shù)量關(guān)系,并證明之;

,,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形ABCD與正方形AEFG的邊ABAEABAE)在一條直線上,正方形AEFG以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過(guò)程中,兩個(gè)正方形只有點(diǎn)A重合,其它頂點(diǎn)均不重合,連接BEDG.(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時(shí),求證:BEDG;(2)如圖3,如果α45°,AB2AE4,求點(diǎn)GBE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家新開(kāi)發(fā)的一種摩托車(chē)如圖所示,它的大燈射出的光線、與地面的夾角分別為,大燈離地面距離

該車(chē)大燈照亮地面的寬度約是多少(不考慮其它因素)?

一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車(chē)動(dòng)作的反應(yīng)時(shí)間是,從發(fā)現(xiàn)危險(xiǎn)到摩托車(chē)完全停下所行駛的距離叫做最小安全距離,某人以的速度駕駛該車(chē),從到摩托車(chē)停止的剎車(chē)距離是,請(qǐng)判斷該車(chē)大燈的設(shè)計(jì)是否能滿足最小安全距離的要求,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).

(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;

(2)寫(xiě)出點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P'的坐標(biāo);

(3)求P'AO的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,分別是,上的動(dòng)點(diǎn),將沿折疊.

(1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),如圖1.,,則的周長(zhǎng)為_____.

(2)定義:若在三角形中,期中一條邊是另一條邊的2倍,則稱這個(gè)三角形為倍邊三角形”.當(dāng)點(diǎn)與點(diǎn)重合時(shí),如圖2.,則是倍邊三角形嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案