【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過(guò)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)E是拋物線對(duì)稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) y=x2﹣4x+3;(2);(3)見解析.
【解析】
(1)利用待定系數(shù)法進(jìn)行求解即可;
(2)設(shè)點(diǎn)M的坐標(biāo)為(m,m2﹣4m+3),求出直線BC的解析,根據(jù)MN∥y軸,得到點(diǎn)N的坐標(biāo)為(m,﹣m+3),由拋物線的解析式求出對(duì)稱軸,繼而確定出1<m<3,用含m的式子表示出MN,繼而利用二次函數(shù)的性質(zhì)進(jìn)行求解即可;
(3)分AB為邊或?yàn)閷?duì)角線進(jìn)行討論即可求得.
(1)將點(diǎn)B(3,0)、C(0,3)代入拋物線y=x2+bx+c中,
得:,
解得:,
故拋物線的解析式為y=x2﹣4x+3;
(2)設(shè)點(diǎn)M的坐標(biāo)為(m,m2﹣4m+3),設(shè)直線BC的解析式為y=kx+3,
把點(diǎn)B(3,0)代入y=kx+3中,
得:0=3k+3,解得:k=﹣1,
∴直線BC的解析式為y=﹣x+3,
∵MN∥y軸,
∴點(diǎn)N的坐標(biāo)為(m,﹣m+3),
∵拋物線的解析式為y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線的對(duì)稱軸為x=2,
∴點(diǎn)(1,0)在拋物線的圖象上,
∴1<m<3.
∵線段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+,
∴當(dāng)m=時(shí),線段MN取最大值,最大值為;
(3)存在.點(diǎn)F的坐標(biāo)為(2,﹣1)或(0,3)或(4,3).
當(dāng)以AB為對(duì)角線,如圖1,
∵四邊形AFBE為平行四邊形,EA=EB,
∴四邊形AFBE為菱形,
∴點(diǎn)F也在對(duì)稱軸上,即F點(diǎn)為拋物線的頂點(diǎn),
∴F點(diǎn)坐標(biāo)為(2,﹣1);
當(dāng)以AB為邊時(shí),如圖2,
∵四邊形AFBE為平行四邊形,
∴EF=AB=2,即F2E=2,F1E=2,
∴F1的橫坐標(biāo)為0,F2的橫坐標(biāo)為4,
對(duì)于y=x2﹣4x+3,
當(dāng)x=0時(shí),y=3;
當(dāng)x=4時(shí),y=16﹣16+3=3,
∴F點(diǎn)坐標(biāo)為(0,3)或(4,3),
綜上所述,F點(diǎn)坐標(biāo)為(2,﹣1)或(0,3)或(4,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數(shù)為______;
②線段AD,BE之間的數(shù)量關(guān)系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在相同條件下重復(fù)試驗(yàn),若事件A發(fā)生的概率是,則下列說(shuō)法正確的是( 。
A. 說(shuō)明在相同條件下做100次試驗(yàn),事件A必發(fā)生50次
B. 說(shuō)明在相同條件下做多次這種試驗(yàn),事件A發(fā)生的頻率必是50%
C. 說(shuō)明在相同條件下做兩個(gè)100次這種試驗(yàn),事件A平均發(fā)生50次
D. 說(shuō)明在相同條件下做100次這種試驗(yàn),事件A可能發(fā)生50次
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在 等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=16cm,BC=8cm,一動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿著CB方向以2cm/s的速度運(yùn)動(dòng),另一動(dòng)點(diǎn)Q從A出發(fā)沿著AC邊以4cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(s).
(1)若△PCQ的面積是△ABC面積的,求t的值?
(2)△PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=OB,點(diǎn)D是上一動(dòng)點(diǎn),點(diǎn)E是CD中點(diǎn),連接BD分別交OC,OE于點(diǎn)F,G.
(1)求∠DGE的度數(shù);
(2)若=,求的值;
(3)記△CFB,△DGO的面積分別為S1,S2,若=k,求的值.(用含k的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是∠ABC和∠ACB兩個(gè)內(nèi)角平分線的交點(diǎn),過(guò)點(diǎn)O作EF∥BC分別交AB,AC于點(diǎn)E,F,已知△ABC的周長(zhǎng)為8,BC=x,△AEF的周長(zhǎng)為y,則表示y與x的函數(shù)圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,,是的中點(diǎn).過(guò)點(diǎn)作,垂足為.將沿點(diǎn)到點(diǎn)的方向平移,得到.設(shè)、分別是、的中點(diǎn),當(dāng)點(diǎn)與點(diǎn)重合時(shí),四邊形的面積為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com