【題目】如圖,已知中,,邊的中點(diǎn),將點(diǎn)旋轉(zhuǎn)得到平分于點(diǎn),交于點(diǎn),連接.下列結(jié)論:①;②;③;④.其中正確的結(jié)論有______(只填寫(xiě)序號(hào)).

【答案】①②③

【解析】

根據(jù)旋轉(zhuǎn)性質(zhì)、平行線性質(zhì)證得EC=EA=BC,推出∠DCB=120°,再由角平分線的性質(zhì)推出∠EBC=BCE=CEB=60°,推出EA=EB=EC,然后根據(jù)中位線定理得出=60°,即可判斷結(jié)論①正確;由平行線分線段成比例定理得出OB=3OF,SCOB=3SCOF,進(jìn)而得出結(jié)論②正確;由∠ACB=90°,設(shè)BC=a, AB=2a,AC=a,

OA=OC=a,根據(jù)勾股定理得出OD,進(jìn)而求得結(jié)論③正確;根據(jù)以上線段的關(guān)系用含a的代數(shù)式表示:OD=,OF=,FB=,即可求得,即結(jié)論④錯(cuò)誤.

解:根據(jù)旋轉(zhuǎn)性質(zhì)可知,OD=OB,OA=OC,∠ACD=CAB,

CD//AB

CD//AB,∠ABC=60°,

∴∠DCB+ABC=180°,
∴∠DCB=120°,
EC平分∠DCB,
∴∠ECB=DCB=60°,
∴∠EBC=BCE=CEB=60°,ECB是等邊三角形,
EB=BC,
AB=2BC,
EA=EB=EC,
OA=OC,

OEBC

∴∠AEO=ABC=60°

∴∠CEO=60°

故結(jié)論①正確;
OEBC,AE=EB

2OE=BC

2OF=BF

OB=3OFSCOB=3SCOF

SCOB=SAOD

OB=3OF

故結(jié)論②正確;

AE=EC,∠CEB=60°

∴∠ACE=A=30°,

∴∠ACB=90°

設(shè)BC=a,則AB=2aAC=a,

OA=OC=a

OD=OB=

故結(jié)論③正確;

OD=,OF=,FB=

OF·OD=

故結(jié)論④不成立

故答案為:①②③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1kxb的圖象與反比例函數(shù)y2的圖象交于A(2,3),B(3,n)兩點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)請(qǐng)直接寫(xiě)出,當(dāng)x取何值時(shí),y1y2?

3)若Py軸上一點(diǎn),且滿足PAB的面積是5,請(qǐng)直接寫(xiě)出OP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行鋼筆書(shū)法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中相關(guān)信息解答下列問(wèn)題:

(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;

(3)獲得一等獎(jiǎng)的同學(xué)中有來(lái)自七年級(jí),有來(lái)自九年級(jí),其他同學(xué)均來(lái)自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書(shū)法大賽,請(qǐng)通過(guò)列表或畫(huà)樹(shù)狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC 中,∠A=30°,∠B=90°,AC=8,點(diǎn) D 在邊 AB BD=,點(diǎn) P 是△ABC 邊上的一個(gè)動(dòng)點(diǎn),若 AP=2PD 時(shí),則 PD的長(zhǎng)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】贛南臍橙果大形正,肉質(zhì)脆嫩,風(fēng)味濃甜芳香,深受大家的喜愛(ài).某臍橙生產(chǎn)基地生產(chǎn)的禮品盒包裝的臍橙每箱的成本為30元,按定價(jià)50元出售,每天可銷(xiāo)售200.為了增加銷(xiāo)量,該生產(chǎn)基地決定采取降價(jià)措施,經(jīng)市場(chǎng)調(diào)研,每降價(jià)1元,日銷(xiāo)售量可增加20.

1)求出每天銷(xiāo)售量y(箱)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;

2)若該生產(chǎn)基地每天要實(shí)現(xiàn)最大銷(xiāo)售利潤(rùn),每箱禮品盒包裝的臍橙應(yīng)定價(jià)多少元?每天可實(shí)現(xiàn)的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn)(的左側(cè)),與軸交于點(diǎn),過(guò)點(diǎn)的直線軸交于點(diǎn),與拋物線的另一個(gè)交點(diǎn)為,己知,,點(diǎn)為拋物線上一動(dòng)點(diǎn)(不與重合).

1)直接寫(xiě)出拋物線和直線的解析式;

2)當(dāng)點(diǎn)在直線上方的拋物線上時(shí),連接、

①當(dāng)的面積最大時(shí),點(diǎn)的坐標(biāo)是________

②當(dāng)平分時(shí),求線段的長(zhǎng).

3)設(shè)為直線上的點(diǎn),探究是否存在點(diǎn),使得以點(diǎn)、,、為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y= (x-h)2+k的頂點(diǎn)在x軸上,其對(duì)稱軸與直線y=x交于點(diǎn)A11),點(diǎn)P是拋物線上一點(diǎn),以P為圓心,PA長(zhǎng)為半徑畫(huà)圓,⊙Px軸于B、C兩點(diǎn).

h= ,k= ;

⑵①當(dāng)點(diǎn)P在頂點(diǎn)時(shí),BC= ;

BC的值是否隨P點(diǎn)橫坐標(biāo)的變化而變化?如果變化,請(qǐng)說(shuō)明理由,如果不變化,請(qǐng)求出這個(gè)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,點(diǎn)是對(duì)角線上一動(dòng)點(diǎn),連接,作分別交于點(diǎn)于點(diǎn)

(1)如圖1,若恰好平分,求證:

(2)如圖2,若,取的中點(diǎn),連接于點(diǎn)

求證:①;②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小杰早上從家勻速步行去學(xué)校,走到途中發(fā)現(xiàn)英語(yǔ)書(shū)忘在家里了,隨即打電話給爸爸,爸爸立即送英語(yǔ)書(shū)去,小杰掉頭以原速往回走,幾分鐘后,路過(guò)一家文具店,此時(shí)還未遇到爸爸,小杰便在文具店購(gòu)買(mǎi)了幾個(gè)筆記本,剛付完款,爸爸剛好趕到,將英語(yǔ)書(shū)交給了小杰(途中小杰打電話、小杰的爸爸找英語(yǔ)書(shū)的時(shí)間忽略不計(jì)):然后,爸爸原速返回,同時(shí)小杰把速度提高到原來(lái)的前往學(xué)校,爸爸到家后,過(guò)一會(huì)小杰才到達(dá)學(xué)校.兩人之間的距離(米)與小杰從家出發(fā)的時(shí)間(分鐘)的函數(shù)關(guān)系如圖所示,則家與學(xué)校相距______米.

查看答案和解析>>

同步練習(xí)冊(cè)答案