【題目】拋物線y=ax2+bx+ca0)的對稱軸為直線x=1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4acb20;②2ab=0;③a+b+c0;④點Mx1,y1)、Nx2,y2)在拋物線上,若x1x2<﹣1,則y1y2,⑤abc0.其中正確結(jié)論的個數(shù)是(  )

A.5B.4C.3D.2

【答案】B

【解析】

①由拋物線與x軸有兩個交點可得出b24ac0,變形后可得結(jié)論①正確;②由拋物線的對稱軸為直線x1可得出b2a,即2ab0,結(jié)論②正確;③根據(jù)拋物線的對稱性可得出當x1y0,進而即可得出abc0,結(jié)論③正確;④當x1yx的增大而增大,結(jié)合x1x21可得出y1y2,結(jié)論④錯誤;⑤根據(jù)拋物線的開口方向、對稱軸及與y軸交點位置,即可得出abc0,結(jié)論⑤正確.

解:①∵拋物線與x軸有兩個交點,

∴△=b24ac0,

4acb20,結(jié)論①正確;

②∵拋物線的對稱軸為直線x1,

b2a,即2ab0,結(jié)論②正確;

③∵拋物線yax2bxca≠0)的對稱軸為直線x1,與x軸的一個交點A在點(3,0)和(2,0)之間,

x1x3的值相等,即當x1y0,

abc0,結(jié)論③正確;

④∵當x1時,yx的增大而增大,x1x21,

y1y2,結(jié)論④錯誤;

⑤∵拋物線開口向下,對稱軸為直線x1,與y軸交于正半軸,

a0b2a0,c0,

abc0,結(jié)論⑤正確.

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(9)已知:ABCD的兩邊ABAD的長是關(guān)于x的方程的兩個實數(shù)根.

1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為2,O到定點A的距離為5,點B在⊙O上,點P是線段AB的中點.若B在⊙O上運動一周:

1)證明點P運動的路徑是一個圓.

(思路引導:要證點P運動的路徑是一個圓,只要證點P到定點M的距離等于定長r,由圖中的定點、定長可以發(fā)現(xiàn)M、r.)

2)△ABC始終是一個等邊三角形,直接寫出PC長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(定義)從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,△ABC中,∠A40°,∠B60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;

2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠Ax°,∠By°,則yx之間的關(guān)系式為_____________________________;

3)如圖2,△ABC中,AC2,BC,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車租賃公司共有汽車50輛,市場調(diào)查表明,當租金為每輛每日200元時可全部租出,當租金每提高10元,租出去的車就減少2輛.

1)當租金提高多少元時,公司的每日收益可達到10120元?

2)公司領(lǐng)導希望日收益達到10200元,你認為能否實現(xiàn)?若能,求出此時的租金,若不能,請說明理由.

3)汽車日常維護要一定費用,已知外租車輛每日維護費為100元,未租出的車輛維護費為50元,當租金為多少元時,公司的利潤恰好為5500元?(利潤=收益一維護費).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前微信”、“支付寶”、“共享單車網(wǎng)購給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對你最認可的四大新生事物進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

(1)根據(jù)圖中信息求出m=   ,n=   

(2)請你幫助他們將這兩個統(tǒng)計圖補全;

(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學生中,大約有多少人最認可微信這一新生事物?

(4)已知A、B兩位同學都最認可微信”,C同學最認可支付寶”D同學最認可網(wǎng)購從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標系中,OB x軸上, OA=2,將三角板繞原點 O 順時針旋轉(zhuǎn) 75°,則點 A 的對應(yīng)點 A′ 的坐標為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面8m時,水面寬AB12m.當水面上升6m時達到警戒水位,此時拱橋內(nèi)的水面寬度是多少m

下面給出了解決這個問題的兩種方法,請補充完整:

方法一:如圖1,以點A為原點,AB所在直線為x軸,建立平面直角坐標系xOy

此時點B的坐標為(   ,   ),拋物線的頂點坐標為(   ,   ),

可求這條拋物線所表示的二次函數(shù)的解析式為   

y6時,求出此時自變量x的取值,即可解決這個問題.

方法二:如圖2,以拋物線頂點為原點,對稱軸為y軸,建立平面直角坐標系xOy,

這時這條拋物線所表示的二次函數(shù)的解析式為   

y   時,求出此時自變量x的取值為   ,即可解決這個問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

同步練習冊答案