【題目】如圖,把長方形紙片ABCD沿對角線折疊,設重疊部分為△EBD,那么下列說法:①是等腰三角形,;②折疊后一定相等;③折疊后得到的圖形是軸對稱圖形;④一定是全等三角形.正確的是______(填序號).

【答案】①③④.

【解析】

根據(jù)矩形的性質得到∠BAE=DCE,AB=CD,再由對頂角相等可得∠AEB=CED,推出AEB≌△CED,根據(jù)等腰三角形的性質即可得到結論,依此可得①③④正確;無法判斷∠ABE和∠CBD是否相等.

∵四邊形ABCD為矩形,
∴∠BAE=DCE,AB=CD,
AEBCED中,,
∴△AEB≌△CEDAAS),
BE=DE,
∴△EBD為等腰三角形,
∴折疊后得到的圖形是軸對稱圖形,
無法判斷∠ABE和∠CBD是否相等.
故其中正確的是①③④.
故答案為:①③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+的圖象與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,過A點作x軸的垂線,垂足為M,AOM面積為1.

(1)求反比例函數(shù)的解析式;

(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.

(1)加工成的正方形零件的邊長是多少mm?

(2)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少?請你計算.

(3)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊△ABC內(nèi)一點,∠BOC,∠AOC100°,將△BOC繞點B按逆時針方向旋轉60°得到△BDA,連接OD.

(1) 求證:△BOD是等邊三角形.

(2) 150°時,試判斷△AOD的形狀,并說明理由.

(3) 若△AOD是等腰三角形,請你直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ACB=∠DBC,添加以下條件,不能判定△ABC≌△DCB的是(  )

A.ABC=∠DCBB.ABD=∠DCA

C.ACDBD.ABDC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=2,點E是射線DA上一點,連接EB,以點E為圓心EB長為半徑畫弧,交射線CB于點F,作射線FECD延長線交于點G

1)如圖1,若DE=5,則∠DEG=______°;

2)若∠BEF=60°,請在圖2中補全圖形,并求EG的長;

3)若以E,FB,D為頂點的四邊形是平行四邊形,此時EG的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標為(8,0),連接AB、AC.

(1)請直接寫出二次函數(shù)y=ax2+x+c的表達式;

(2)判斷ABC的形狀,并說明理由;

(3)若點N在x軸上運動,當以點A、N、C為頂點的三角形是等腰三角形時,請寫出此時點N的坐標;

(4)如圖2,若點N在線段BC上運動(不與點B、C重合),過點N作NMAC,交AB于點M,當AMN面積最大時,求此時點N的坐標.

查看答案和解析>>

同步練習冊答案