【題目】解一元二次不等式.
請(qǐng)按照下面的步驟,完成本題的解答.
解:可化為.
(1)依據(jù)“兩數(shù)相乘,同號(hào)得正”,可得不等式組①或不等式組②________.
(2)解不等式組①,得________.
(3)解不等式組②,得________.
(4)一元二次不等式的解集為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,CD=2cm, AB的垂直平分線MN交AC于D,連結(jié)BD,則AC的長(zhǎng)是___________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】24點(diǎn)游戲是一種使用撲克牌來進(jìn)行的益智類游戲,游戲內(nèi)容是:從一副撲克牌中抽去大小王剩下52張,任意抽取4張牌,把牌面上的數(shù)運(yùn)用你所學(xué)過的運(yùn)算得出24.每張牌都必須使用一次,但不能重復(fù)使用.
(1)在玩“24點(diǎn)”游戲時(shí),小明抽到以下4張牌:
請(qǐng)你幫他寫出運(yùn)算結(jié)果為24的算式:(寫出2個(gè))
_______________________; _______________________;
(2)如果.表示正,.表示負(fù),請(qǐng)你用(1)中的4張牌表示的數(shù)寫出運(yùn)算結(jié)果為24的算式(寫出2個(gè)):
__________________________; __________________________;
(3)如果小明抽到以下4張牌:
請(qǐng)你用這4張牌表示的數(shù)寫出運(yùn)算結(jié)果為24的一個(gè)算式:
__________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一個(gè)三位正整數(shù)t,將各數(shù)位上的數(shù)字重新排序后(包括本身),得到一個(gè)新的三位數(shù) (a≤c),在所有重新排列的三位數(shù)中,當(dāng)|a+c﹣2b|最小時(shí),稱此時(shí)的 為t的“最優(yōu)組合”,并規(guī)定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后為:142、214、因?yàn)?/span>|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124為124的“最優(yōu)組合”,此時(shí)F(124)=﹣1.
(1)三位正整數(shù)t中,有一個(gè)數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù),求證:F(t)=0;
(2)一個(gè)正整數(shù),由N個(gè)數(shù)字組成,若從左向右它的第一位數(shù)能被1整除,它的前兩位數(shù)能被2整除,前三位數(shù)能被3整除,…,一直到前N位數(shù)能被N整除,我們稱這樣的數(shù)為“善雅數(shù)”.例如:123的第一位數(shù)1能披1整除,它的前兩位數(shù)12能被2整除,前三位數(shù)123能被3整除,則123是一個(gè)“善雅數(shù)”.若三位“善雅數(shù)”m=200+10x+y(0≤x≤9,0≤y≤9,x、y為整數(shù)),m的各位數(shù)字之和為一個(gè)完全平方數(shù),求出所有符合條件的“善雅數(shù)”中F(m)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:若,則稱點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.
例如:點(diǎn)(1,2)的“可控變點(diǎn)”為點(diǎn)(1,2),點(diǎn)(﹣1,3)的“可控變點(diǎn)”為點(diǎn)(﹣1,﹣3).
(1)若點(diǎn)(﹣1,﹣2)是一次函數(shù)圖象上點(diǎn)M的“可控變點(diǎn)”,則點(diǎn)M的坐標(biāo)為 ;
(2)若點(diǎn)P在函數(shù)()的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′的取值范圍是,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)在“雙十一”促銷活動(dòng)中決定對(duì)購買空調(diào)的顧客實(shí)行現(xiàn)金返利.規(guī)定每購買一臺(tái)空調(diào),商場(chǎng)返利若干元.經(jīng)調(diào)查,銷售空調(diào)數(shù)量y1(單位:臺(tái))與返利x(單位:元)之間的函數(shù)表達(dá)式為.每臺(tái)空調(diào)的利潤(rùn)y2(單位:元)與返利x的函數(shù)圖像如圖所示.
(1)求y2與x之間的函數(shù)表達(dá)式;
(2)每臺(tái)空調(diào)返利多少元才能使銷售空調(diào)的總利潤(rùn)最大?最大總利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書籍開本有數(shù)學(xué)
開本指書刊幅面的規(guī)格大。鐖D①,將一張矩形印刷用紙對(duì)折后可以得到2開紙,再對(duì)折得到4開紙,以此類推可以得到8開紙、16開紙……
若這張矩形印刷用紙的短邊長(zhǎng)為a.
(1)如圖②,若將這張矩形印刷用紙ABCD(ABBC)進(jìn)行折疊,使得BC與AB重合,點(diǎn)C落在點(diǎn)F處,得到折痕BE;展開后,再次折疊該紙,使點(diǎn)A落在E處,此時(shí)折痕恰好經(jīng)過點(diǎn)B,得到折痕BG,求的值.
(2)如圖③,2開紙BCIH和4開紙AMNH的對(duì)角線分別是HC、HM.說明HC⊥HM.
(3)將圖①中的2開紙、4開紙、8開紙和16開紙按如圖④所示的方式擺放,依次連接點(diǎn)A、B、M、I,則四邊形ABMI的面積是________.(用含a的代數(shù)式表示,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自實(shí)施新教育改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分同學(xué)進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類:A.特別好;B.好;C.一般;D.較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)查了多少名同學(xué)?
(2)求出調(diào)查中C類女生及D類男生的人數(shù),將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com