【題目】如圖,在平面直角坐標系中,過點的直線與直線相交于點,動點在線段和射線上運動.
(1)求直線的函數(shù)關系式.
(2)求的面積.
(3)是否存在點,使的面積與的面積相等?若存在求出此時點的坐標;若不存在,說明理由.
【答案】(1);(2)6;(3),,
【解析】
(1)利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)先求出點B的橫坐標,再利用三角形的面積公式即可求解;
(3)根據(jù)△OMC的面積與的面積相等,根據(jù)面積公式即可求得M的橫坐標,用待定系數(shù)法求出直線OA的解析式,然后把M的橫坐標分別代入兩個解析式即可求得M的坐標.
(1)因為點C的坐標為(0,6),所以設直線AB的函數(shù)表達式為y=kx+6,
把點A的坐標為(4,2)代入得, 4k+6=2,
解得k=-1,
∴直線AB的函數(shù)表達式為y=-x+6;
(2)把y=0代入y=-x+6,得
x=6.
∴的面積
(3)設M得橫坐標為x,
由題意得
,
∴,
∴x=2或x=-2.
設直線OA的解析式為y=mx,
把A(4,2)代入得
4m=2,
∴m=,
∴y=x,
把x=2代入y=x得
y=×2=1,
∴M(2,1);
把x=2代入y=-x+6得
y=-2+6=4,
∴M2(2,4);
把x=-2代入y=-x+6得
y=2+6=8;
∴M2(-2,4);
綜上所述:M的坐標是:,,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊內一點將繞點C按順時針方向旋轉得,連接已知.
求證:是等邊三角形;
當時,試判斷的形狀,并說明理由;
探究:當為多少度時,是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮兩位同學在學習“概率”時,做投擲骰子(質地均勻的正方體)實驗,他們實驗的結果如下:
朝上的點數(shù) | ||||||
出現(xiàn)的次數(shù) |
請計算“點朝上”的頻率和“點朝上”的頻率.
一位同學說:“根據(jù)實驗,一次實驗中出現(xiàn)點朝上的概率最大”.這位同學的說法正確嗎?為什么?
小明和小亮各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數(shù)之和為的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,E,C,F(xiàn)在同一條直線上,AB=DE,∠B=∠DEF.要使△ABC≌△DEF,則需要再添加的一個條件是_______.(寫出一個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,他們的運動時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由
(2)判斷此時線段PC和線段PQ的關系,并說明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形DEF是三角形ABC經過某種變換得到的圖形,點A與點D,點B與點E,點C與點F分別是對應點,觀察點與點的坐標之間的關系,解答下列問題:
(1)分別寫出點A與點D,點B與點E,點C與點F的坐標,并說說對應點的坐標有哪些特征;
(2)若點P(a+3,4-b)與點Q(2a,2b-3)也是通過上述變換得到的對應點,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊形為1個單位長度,線段AD的兩個端點都在格點上,點B是線段AD上的格點,且BD=1,直線l在格線上.
(1)在直線l的左側找一格點C,使得△ABC是等腰三角形(AC<AB),畫出△ABC.
(2)將△ABC沿直線l翻折得到△,試畫出△.
(3)畫出點P,使得點P到點D、A’的距離相等,且到邊AB、AA’的距離相等.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com