【題目】如圖,在△ABC中,AB=5,AC=3,BC=7,AI平分∠BAC,CI平分∠ACB,將∠BAC平移,使其頂點(diǎn)與點(diǎn)I重合,則圖中陰影部分的周長為( )
A.5B.8C.10D.7
【答案】D
【解析】
連接IB,將∠BAC平移,使其頂點(diǎn)與點(diǎn)I重合,交BC于點(diǎn)E、F,根據(jù)平移的性質(zhì)得到IE∥AB,IF∥AC,利用平行線的性質(zhì)得到∠FIC=∠ACI,∠ABI=∠EIB,再利用等角對(duì)等邊可知BE=IE,IF=FC,利用等量代換即可解答.
如圖,連接IB,將∠BAC平移,使其頂點(diǎn)與點(diǎn)I重合,交BC于點(diǎn)E、F,
∵平移
∴IE∥AB,IF∥AC
∴∠FIC=∠ACI,∠ABI=∠EIB
∴BE=IE,IF=FC
圖中陰影部分的周長=IE+IF+EF=BE+FC+EF=BC=7
故選D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)上的圖象經(jīng)過點(diǎn),直線與雙曲線在第二、四象限分別相交于P、Q兩點(diǎn),與x軸、y軸分別相交于C,D兩點(diǎn)
求k的值;
連接OQ,是否存在實(shí)數(shù)b,使得?若存在,請(qǐng)求出b的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“頻率具有穩(wěn)定性”的試驗(yàn)時(shí),繪出某一結(jié)果出現(xiàn)的頻率折線圖如圖所示,則符合這一結(jié)果的試驗(yàn)可能是( )
A.拋一枚硬幣,出現(xiàn)正面朝上
B.擲一個(gè)正六面體的骰子,擲出的點(diǎn)數(shù)是5
C.任意寫一個(gè)整數(shù),它能被2整除
D.從一個(gè)裝有2個(gè)紅球和1個(gè)白球的袋子中任取一球(這些球除顏色外完全相同),取到的是白球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)在第一象限,為等邊三角形,,垂足為點(diǎn).,垂足為.
(1)求OF的長;
(2)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),連交于E,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知中,點(diǎn)在邊上,交邊于點(diǎn),且平分.
(1)求證:;
(2)如圖2,在邊上取點(diǎn),使,若,,求的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.
(1)求證:無論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,AB=AC,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且AE+AF=AB,
(1)求證:DE⊥DF;
(2)若AC=2,求四邊形DEAF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,.
(1)如圖①,以點(diǎn)為直角頂點(diǎn),為腰在右側(cè)作等腰,過點(diǎn)作交的延長線于點(diǎn).求證:.
(2)如圖②,以為底邊在左側(cè)作等腰,連接,求的度數(shù).
(3)如圖③,中,,垂足為點(diǎn),以為邊在左側(cè)作等邊,連接交于,,,求的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com