【題目】如圖,已知在中,,分別是,的中點(diǎn),是對(duì)角線,延長(zhǎng)線于.若四邊形是菱形,則四邊形是(

A. 平行四邊形 B. 矩形

C. 菱形 D. 正方形

【答案】B

【解析】

如圖先由菱形的性質(zhì)得出AE=BE=DE,通過(guò)AD∥BC,AG∥BD,可證明四邊形ADBG是平行四邊形,再通過(guò)角之間的關(guān)系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.

∵四邊形ABCD是平行四邊形,

∴AD∥BC.

∵AG∥BD,

∴四邊形AGBD是平行四邊形.

∵四邊形BEDF是菱形,

∴DE=BE.

∵AE=BE,

∴AE=BE=DE.

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°,

∴2∠2+2∠3=180°.

∴∠2+∠3=90°.

即∠ADB=90°.

∴四邊形AGBD是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)與一次函數(shù)y=x+b的圖象,都經(jīng)過(guò)點(diǎn)A12

1)試確定反比例函數(shù)和一次函數(shù)的解析式;

2)求一次函數(shù)圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用墻為一邊,用長(zhǎng)為的材料作另三邊,圍成一個(gè)面積為的長(zhǎng)方形小花園,這個(gè)長(zhǎng)方形的長(zhǎng)和寬各是(

A. 5m,4m B. 8m,2.5m

C. 10m,2m D. 5m,4m8m,2.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,CE是外角∠ACD的平分線,BE是∠ABC的平分線.

(1)求證:∠A2E,以下是小明的證明過(guò)程,請(qǐng)?jiān)诶ㄌ?hào)里填寫(xiě)理由.

證明:∵∠ACD是△ABC的一個(gè)外角,∠2是△BCE的一個(gè)外角,(已知)

∴∠ACD=∠ABC+A,∠2=∠1+E(_________)

∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性質(zhì))

CE是外角∠ACD的平分線,BE是∠ABC的平分線(已知)

∴∠ACD22,∠ABC21(_______)

∴∠A2221(_________)

2(2﹣∠1)(_________)

2E(等量代換)

(2)如果∠A=∠ABC,求證:CEAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是邊長(zhǎng)為6的等邊三角形,邊上一動(dòng)點(diǎn),由運(yùn)動(dòng)(與、不重合),延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)同時(shí)以相同的速度由延長(zhǎng)線方向運(yùn)動(dòng)(不與重合),過(guò),連接.

1)當(dāng)時(shí),求的長(zhǎng);

2)在運(yùn)動(dòng)過(guò)程中線段的長(zhǎng)是否發(fā)生變化?如果不變,求出線段的長(zhǎng);如果發(fā)生改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)兩種商品,購(gòu)買(mǎi)個(gè)商品比購(gòu)買(mǎi)個(gè)商品多花元,并且花費(fèi)元購(gòu)買(mǎi)商品和花費(fèi)元購(gòu)買(mǎi)商品的數(shù)量相等.

1)求購(gòu)買(mǎi)一個(gè)商品和一個(gè)商品各需要多少元?

2)若商店準(zhǔn)備購(gòu)買(mǎi),兩種商品共個(gè),并且購(gòu)買(mǎi),兩種商品的總費(fèi)用不超過(guò)元,那么商店至多購(gòu)買(mǎi)商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形為正方形,點(diǎn)為線段上一點(diǎn),連接,過(guò)點(diǎn),交射線于點(diǎn),以、為鄰邊作矩形,連接

如圖,求證:矩形是正方形;

,,求的長(zhǎng)度;

當(dāng)線段與正方形的某條邊的夾角是時(shí),直接寫(xiě)出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,C、D⊙O上的點(diǎn),且OC∥BD,AD分別與BC、OC相較于點(diǎn)E、F,則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC; ③BC平分∠ABD;④△CEF≌△BED.其中一定成立的是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,.點(diǎn)從點(diǎn)出發(fā)沿射線方向運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā),以相同的速度沿射線方向運(yùn)動(dòng),連,交直線于點(diǎn)

當(dāng)點(diǎn)運(yùn)動(dòng)到中點(diǎn)時(shí),求的長(zhǎng).

求證:.

過(guò)點(diǎn),交直線,請(qǐng)?zhí)骄?/span>之間的數(shù)量關(guān)系,并直接寫(xiě)出結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案